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Abstract. As more companies implement CAPTCHA systems to try to
prevent automated attacks, CAPTCHA creators are increasingly using
machine learning to try to filter out unwanted traffic. These systems
are increasingly important in the development and maintenance of many
web-based applications. As machine learning has evolved, so have the
detection methods to block automated web traffic. As a result, some
image-based CAPTCHAs are being replaced with systems that analyze
mouse movements of the user to identify how likely it is that the user is
human.

In this research, we develop and evaluate a 2-layer convolutional neu-
ral network driven framework that generates human-like motions. These
types of movements are tracked by some CAPTCHA systems. We demon-
strate that the framework’s automatically generated movement paths can
effectively and efficiently trick a classifier trained on features that are ex-
tracted from paths generated by humans. Using a 2-feature classifier as
a CAPTCHA that was trained to recognize 91% of the human paths as
valid human paths from our dataset, we are able to successfully bypass
the CAPTCHA 89.25% of the time.

Keywords: Web Application Security, Machine Learning, interaction-
based CAPTCHA

1 Introduction

Many websites use Completely Automated Public Turing tests to tell Comput-
ers and Humans Apart (CAPTCHAs) to prevent automated web traffic (bots).
CAPTCHAs are designed to protect websites against bots posting fake reviews,
stealing data from compromised accounts, posting phishing scams, manipulat-
ing contests/polls, and disrupting normal website functions. CAPTCHAs have
many different forms. Some CAPTCHAs require the user to type the text that
is spoken in an audio clip. However, the most ubiquitous CAPTCHAs are visual
puzzles that the user must solve before logging into a website. The primary goal
of CAPTCHAs is to be as easy as possible for humans to solve while blocking
most automated requests.

According to the design goals, a CAPTCHA can be considered successful if it
allows humans to solve a test successfully 90% of the time while allowing no
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Fig. 1. reCAPTCHA V1 [15]

more than 1% of automated attacks to solve the test [14]. However, a Stanford
study found that users were able to solve Google’s text-based CAPTCHAs (re-
CAPTCHA V1 as seen in Figure 1) with 86% accuracy. The accuracy was much
lower for Google audio CAPTCHAs, which had a solving accuracy of 35% [11].
Difficult CAPTCHAs frustrate users and harm the user experience. In some
cases, bots may be able to solve CAPTCHAs more accurately and quickly than
humans can.

To make CAPTCHAs easy to solve, modern CAPTCHA techniques involve us-
ing invisible tests that are interaction-based and monitor how the user moves
the mouse, how they interact with webpages, and how frequently they visit
those webpages. Interaction-based CAPTCHAs have the advantage that the user
does not have to solve puzzles. This allows websites to only present traditional
CAPTCHAs or block the user when the user is suspected of being a bot. To
accomplish this, CAPTCHA providers collect several statistics about the user
over a period of time and use machine learning to calculate a score that indi-
cates the probability that the user is human. While the exact behavior of the
machine learning algorithm are generally kept secret, security experts theorize
that simple classifiers are used to detect abnormal users (bots).

The purpose of our research is to demonstrate the weakness of mouse-movement
based CAPTCHAs and contribute to the understanding of mouse-based bio-
metrics. We use machine learning to demonstrate that mouse movements can be
generated from known real mouse movement behavior to bypass classifiers. To do
this, we created a machine-learning based model to generate mouse movement
paths. These paths are tested against a classifier that we created as a represen-
tative CAPTCHA system. This allowed us to accurately re-create and repeat
tests. Using a 2-layer convolutional neural network (CNN) to generate the paths
and a 2-layer Dense network to generate the timestamps, we created 10,000 dat-
apoints that had the same destination goal as 10,000 human-generated paths.
Out of the 10,000 paths generated by our AI network, 89.25% of the paths were
detected as human by a 2-feature, one-class classifier that was trained using only
human-generated paths.

In summary, the main contributions of this paper are:

1. Outline a framework to bypass an example captcha service (section 3)

2. Create an example neural network to generate output paths (section 4.1)

3. Detect paths as human or bot using a classifier as an example captcha service
(section 4.2)

4. Demonstrate potential vulnerabilities in mouse-movement based captchas
(Section 5.3)



Generating Human-like Motion to Defeat Interaction-Based CAPTCHAs 3

2 Background

Most CAPTCHAs have used problems that are difficult to reliably program
a computer to solve such as image recognition or language processing. Thus,
successful CAPTCHAs are easy for humans to solve, but not un-solvable for
computers. Computers may be able to solve them, but at a high cost-time price;
they often require powerful computers, significant time, or large data-sets. This
reduces the number of automated attacks that can be done against a target.

Early CAPTCHAs were simply text embedded into images. The text is usually
distorted to make identifying text harder using optical character recognition.
These text-based CAPTCHAs are relatively simple for algorithms to solve. Al-
though these CAPTCHAs were reportedly the most common type, they have
largely been replaced with better CAPTCHAs such as ReCAPTCHA which is
now one of the most common, types [18]. Google, which owns reCAPTCHA,
removed support for their text-based CAPTCHAs known as reCAPTCHA v1.
Amazon still uses their own implementation of text-based CAPTCHAs.

Because of the weaknesses of text CAPTCHAs, image based CAPTCHAs are of-
ten used. The most common of these is the Google reCAPTCHA v2. With image
CAPTCHAs, the user selects all the images that match what the CAPTCHA
requires. These types of CAPTCHAs are more difficult to solve and require more
resources, however they are quite solvable. One 2016 study was able to solve im-
age CAPTCHAs with 41% accuracy and took only 20.4 seconds to solve them
[30].

Audio CAPTCHAs are often presented along with image or text based
CAPTCHAs. These CAPTCHAs are designed to present an audio-alternative
to image based CAPTCHAs for visually impaired users. Audio CAPTCHAs,
however, have long been a target for attackers. In 2009, researchers were able to
solve Google’s image reCAPTCHA V2 CAPTCHAs with 67% accuracy to obtain
an exact match. In addition, the researchers found that even the general public
could solve audio CAPTCHAs with 70% accuracy [33]. As audio recognition has
improved, Google has implemented features to make audio CAPTCHAs more
difficult to break, such as adding noise and creating more complicated audio
phrases to solve. However, in a more recent paper, researchers were still suc-
cessful at breaking audio CAPTCHAs. In that paper it was shown that, using
publicly available audio recognition software, audio reCAPTCHAs were solved
with greater than 83% accuracy [10]. The researchers found that other audio
CAPTCHAs were much more difficult to solve using speech recognition.

Partly because of the reliability issues with audio CAPTCHAs, interaction based
CAPTCHAs are becoming more popular. Interaction CAPTCHAs do not require
the user to solve puzzles, but they instead ”invisibly” monitor the user input and
behavior while the user is interacting with the webpage. This can be done by
using javascript to monitor mouse movements. Thus, the user does not even
know they are solving a CAPTCHA. In 2018, Google introduced reCAPTCHA
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V3 which is an entirely interaction-based CAPTCHA system that is invisible to
the user.

For security purposes, CAPTCHA companies do not fully disclose what informa-
tion they track about users or how automated bots are detected using interaction
based CAPTCHAs. However, some of these companies state that they do collect
mouse movement, network traffic, cookie, and other data about the users. Se-
curity researchers speculate that these companies use this information as input
into machine learning algorithms to determine if the user is human. Thus, if the
user has suspicious mouse movements, the CAPTCHA service might subject the
user to additional tests. Google’s reCAPTCHA V2 image CAPTCHAs are re-
portedly protected by a checkbox that tracks mouse movements prior to clicking
on the checkbox. If the mouse movements are determined to be suspicious, the
user is presented with an image CAPTCHA.

3 CAPTCHA Automation Framework

Because user-interaction CAPTCHAs need to be very compliant to allow for
a wide range of human interactions, this requirement could allow even poorly
designed bots to mimic the behavior of a subset of users. Even though modern
CAPTCHAs are thought to use mouse movement as one data point to determine
if the user is human, this does not preclude attackers from automating mouse
movements. Many bot-makers use extensive techniques to bypass CAPTCHAs
because it can be very profitable. The goal of this project is to determine if
motion based CAPTCHAs are a practical means for defeating online automation.

To accomplish this goal, we used a deep learning algorithm to generate mouse
movement paths that mimic a set of human-like mouse movements. Although
mouse movement is not the only aspect of user interaction that CAPTCHAs
monitor, it is an aspect that is not often reproduced. Some CAPTCHAs list
mouse movement analysis as a feature that is specifically monitored, and mouse
interaction was determined to be an element of Google CAPTCHAs [1]. Testing
this on real CAPTCHA services would be prohibitive because it would be difficult
to isolate this single feature while testing. Thus, to test if the deep learning
algorithm is successful, a machine learning classifier must be created instead to
monitor important aspects of the path. A diagram that shows our method can
be seen in Figure 2. Our method to create an algorithm for human-like mouse
movement has several steps.

The first step is to manipulate a dataset into a usable form. Regardless of which
dataset is used, the data must be in a consistent format. The dataset is a col-
lection of mouse coordinates and timestamps that correspond to the path that
a human took to complete a task such as clicking on a button. These paths are
used as inputs to both the path generator and CAPTCHA emulator.

The next part of the diagram is the path generator, which is the piece that a bot
would use to press buttons on a page to trick CAPTCHA services. It is respon-
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sible for creating the x,y coordinates and velocities for the mouse movements.
For a given input destination coordinate, the path generator creates N number
of coordinates and timestamps. The number of coordinates is determined by
the length of the input paths. Because neural networks can be used to generate
multiple outputs using learned parameters, they are ideal for this project. To
allow more flexibility with training each of the models, we separated the path
generator into two different neural network models. The first model creates the
x,y coordinates for the path, and the second generates the timestamp data for
each of the coordinates.

Fig. 2. Diagram of our process.

The final piece of the diagram is the CAPTCHA emulator which calculates
features about the path so that the classifier can determine if the user is a
human or not. In a real CAPTCHA, the features would be calculated client-
side by obfuscated code before it is transmitted to the CAPTCHA provider’s
servers. Because commercial CAPTCHA service classifiers predict using multiple
variables, our classifier behaves as a known quantity that we use to test our
path generator. The classifier uses different calculated statistics (features) to
predict whether an input path is human or a bot. The classifier is trained using
a test dataset that is separate from the dataset used to train the neural network.
We use the support vector machine (SVM) for our classifier because they are
widely used in bot detection and can be configured in many different ways [35].
One-sided classifiers have the disadvantage that they can be less accurate than
classifiers trained on a comprehensive dataset. However, we feel that this is a
more realistic scenario for how real CAPTCHAs work. There are many possible
ways that bots can move the mouse, such that training a classifier using them
all would be impossible.

The classifier provides a determination about whether the features identify it as
a human or non-human path. Each path falls into one of four categories:

– False negatives: human path classified as non-human

– True positives: human path classified as human

– False positives: non-human path classified as human
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– True negatives: non-human path classified as non-human

4 Implementation

The two primary components of the framework are the path generator, which
generates the human-like mouse movements, and the classifier, which serves as
part of the CAPTCHA emulator.

4.1 Path Generator

To allow more flexibility with training each of the models, we separate the path
generator into two different neural network models. The first model creates the
x,y coordinates for the path, and the second model generates the timestamp
data for each of the coordinates. For the path model, we use a 2-layer CNN
that generates a 100 point path consisting of x and y coordinates for a pair of
destination coordinates. The first CNN layer had a kernel size of 5 with linear
activation and the second layer had a kernel size of 1 and linear activation. We
chose a CNN because they are well-suited for spatial data such as coordinates
and images. This model was trained using 10,000 paths (approximately half the
human-generated paths datset) each of which contained 100 points. The second
model creates an array of 100 timestamps that correspond to each of the points.
This timestamp indicates the amount of time that has passed since the mouse
first started moving. For this model, a Tensorflow dense neural network was
used with 2 layers. Dense neural networks are deep learning networks similar to
CNNs, but are more general purpose than CNNs. The first layer used 216 units
with ReLU activation and the second layer used 100 units with ReLU activation.
The timestamp model is trained on 10,000 different paths that each contained
100 timestamps. Both the coordinate and timestamp generator models used
mean squared error for the loss function with an adam optimizer. Both models
were trained for 100 epochs. After the paths are generated, they are scaled and
normalized to make them more similar to natural paths. The x coordinates of
the paths are normalized using formula 1.

x′ =
x− min x

max x− min x
(1)

After path normalization, the paths are rotated to ensure that the path end point
was as close as possible to the input end point. This helps handle inconsistencies
with the path generator to make sure that the the generated and user paths can
be compared. Formula 2 shows the rotation matrix used to realign the paths.

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(2)
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4.2 Classifier

We configured our classifier with an SVM and a radial basis function (RBF)
kernel using Scikit-learn and Python. The RBF kernel classifies data in radial
patterns to identify outliers. We used this kernel because it is simple to configure
and can accurately detect clusters of similar data. We set ν, which controls the
number of outliers/training errors in the training set, to 0.09 so that we have
the desired 90% user-success (discussed in the metrics section) for the classifier
while training. This parameter adjusts the size of the decision boundary.

For selected features, we selected two that we determined to be very important
in determining how to classify a path. We used average mouse speed and distance
over the minimum to the destination. The combination of these features helps
the classifier more accurately differentiate humans from non-humans.

For average mouse speed, we measured the average distance moved from the
previous point and the time delta from the previous timestamp to create the
overall average speed for each of the paths. This feature is important because
several tools, such as web testing tools, exist to move a mouse to a destination.
These tools move the mouse instantaneously to the desired position so that
buttons on web pages can be clicked on automatically. Thus, mouse paths with
abnormally high velocities would be classified as non-human.

The distance over minimum feature calculates the difference between the total
path length that the mouse has taken and the shortest path between the starting
point and the path end point. An abnormally short path can indicate that a
bot moved the cursor straight to the target, or an abnormally long path might
indicate that random movements are done before the mouse was moved to the
destination.

Fig. 3. A sample of the first 25 generated paths and natural paths.
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5 Evaluation

We analyze the sample paths in Figure 3 to determine if our methods are suc-
cessful. The generated paths do appear to be much longer and follow a more
uniform shape. However, to properly analyze how our technique behaved, we
must analyze the quantative results from the classifier.

We intend to show the following:

– The obtained dataset is a reasonable approximation of average human

– Our classifier follows the less than 10% false negative design goal for
CAPTCHAs

– More than 10% of the paths from the path generator are classified as human
by the classifier

5.1 Dataset

For our data, we use coordinates in standard Cartesian units (many programs
generate coordinates with a reversed y axis). In addition, the coordinates all
start at the origin and travel in the positive y direction to make comparing the
paths easier. The x values of the dataset are scaled between -1 and 1 to improve
the training rate for the path generator. The timestamps contain time data that
starts at zero (or can be translated back to zero) and have millisecond accuracy
to ensure that accurate time data is obtained for each point.

For our dataset, we use the data set that is included with the Github project
Natural Mouse Movements Neural Networks [8]. This human-based data was
used in [8] for a similar goal, to generate paths that are human-like, but the
original project did not provide details about how the dataset was gathered
from human subjects. The human mouse motion data provided by this project
consists of 21,417 paths all consisting of 100 data points each. The paths have
all been scaled between -1 and 1 for normalization among the paths. The data
set also includes timestamps for each point in the path. Only human data was
used in our study. To avoid influencing the results, the generator and classifier
are trained with separate subsets of the dataset. The dataset is divided into two
groups of approximately 10,000 paths each.

To demonstrate that our dataset of human-based mouse movement is represen-
tative of human user data outside of their study, we recorded 100 paths and
timestamps to compare to the dataset. Our paths are collected from a single hu-
man subject using software that is running on a local machine (non-web based).
Before recording is started, the mouse cursor is positioned in approximately the
same point of the screen (bottom center). When the user is ready, a button is
pressed which starts a mouse recording application named cnee. After starting
the recording, the user moves the mouse cursor to a randomly selected icon at
the top of the screen. When the user reaches the icon, they click a mouse button
which stopped the recording software. Structuring our recording this way reduced
the amount of post-processing necessary to create a uniform dataset. The mouse
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paths are recorded in the format [(x0, y0, t0), (x1, y1, t1), ...(xn, yn, tn)] where xn
is the x coordinate of the mouse movement, yn is the y coordinate of the mouse
movement, and tn is the timestamp of the mouse movement.

(a) Path total length boxplot (b) Path average speed boxplot

Fig. 4. Data validation between our collected paths and the dataset

These paths are then normalized so that they are in a similar format to the
Github dataset. Overall, our recorded paths are very similar to our selected
dataset. Our average path length was 446 (pixels) with a standard deviation of
190.146, and the dataset had an average path length of 584.42 with a standard
deviation of 365.74. For the mouse movement speed, our paths had an average
speed of 0.0049 (pixels/second) with a standard deviation of 0.0025 and the
dataset had an average speed of 0.0021 with a standard deviation of 0.0023.
Figure 4 shows a boxplot comparing our collected data to the dataset. Figure
4(a) shows that our paths are approximately the same average length with the
dataset having many more outliers, which is expected for this kind of dataset.
Figure 4(b) shows that our collected paths are, on average, slightly faster. This
could be due to the way that we collected the paths. Because we collected our
paths in rapid succession, the tendency was for the human to move the mouse
faster than usual. Overall, however, the path speeds are reasonably close to the
dataset, with our average speed falling within the 2 sigma range of the dataset
average.

One of the other datasets that we considered for this project was the Balabit
Mouse Challenge Data Set [21]. While this dataset did provide some details how
it was collected, it did have some problems. This dataset, which was collected
over remote desktop software, contains large jumps in the paths. In addition,
there are many paths that have conflicting timestamp data. While some of these
problems could be overcome, we decided to use the Natural Mouse Movements
dataset because of the more consistent data.
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5.2 Metrics

To measure how effective our method is in bypassing the classifier, we record
the number of false positives and false negatives. We then measure the success
using the number of false negatives (the number of times that the AI generated
path is detected as a human). The number of false positives can also be used
to determine the effectiveness of our bot-detector classifier. A classifier that
detects too large of a percent (10%) of valid user inputs as non-human (false
positive) does not meet the design criteria for CAPTCHAs and is invalid for our
tests. A false positive detection rate of 10% would be a worst-case scenario for
a classifier to achieve a 90% accuracy (the stated design goal for CAPTCHAs)
for a user solve rate. The number of false positives and negatives is also used to
calculate the F-score to show the overall performance of the classifier. Because
CAPTCHAs are designed with a missed detection rate of 1 in 10,000, a false
negative rating by the classifier of 1% or greater is considered a success [14].

5.3 Results

From Figure 3, we can see that our path generator tended to create parabolic
paths based off of the training input. The paths are not perfectly smooth but had
some ripple. For several of the paths, the endpoint did not match the designated
end points. This was fixed using the matrix transformations discussed in Section
4.1 to rotate the paths to have the correct endpoint.

Out of the 21,417 paths, a total of 20,000 were used for training (1,417 were not
used). The first 10,000 randomly selected paths (group 1) were used for training
the path generator, and the second 10,000 randomly selected paths (group 2)
were are for training the classifier. After training, the path generator is instructed
to generate an additional 10,000 paths (group 3) using the starting and ending
points of all the paths from group 1. By constructing the dataset this way, we
obtain 10,000 human paths (group 1) and 10,000 generated paths (group 3) that
can be easily compared because they have identical starting and destination
points. In addition, these two groups do not bias the classifier results because
they are not used to train the classifier.

To analyze how effective the path generator was at replicating the human paths,
we analyze the results of the output of the classifier. Out of the 20,000 data
points presented to the classifier (the 10,000 human paths from group 1, and
the 10,000 generated paths from group 3), 18,023 paths are detected as human.
As set by the design criteria, the 10,000 human-generated paths are detected as
human greater than 90% of the time (90.98%) using our two-feature classifier.
Figure 5(a) is a feature plot that shows which human paths are classified as
human based off of their features (x-axis is the average mouse speed, y-axis is
path distance over minimum). For our generated paths, the classifier classified
89.25% (8,925) of the paths as human. The feature plot of the generated data that
is shown in Figure 5(b) shows that the path generator created many paths with
features similar to the human-created paths (x-axis is the average mouse speed,
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(a) Feature plot of the human paths (b) Feature plot of the generated
paths

Fig. 5. Velocity and distance extracted features.

(a) Generated path classified as hu-
man

(b) Generated path classified as
non-human

Fig. 6. Comparison of generated and natural paths

y-axis is path distance over minimum). The human paths, however, were more
evenly distributed along the x axis while the generator has more paths clustered
near the origin This resulted in a high false positive rate for the classifier. The
F-score (which is an indication of the performance of classifiers) for our model
is 0.649 and the model accuracy is 50.87%.

Although the generated paths in Figure 3 look significantly different than the
paths they are supposed to replicate, this is not necessarily an issue. The goal of
the generator is not to create paths that look identical to one specific path, but
rather to generate paths that are similar in shape, length, and speed to human
paths. Figure 6 shows an example of two paths that look very similar, but are
classified differently. The destination in Figure 6(a) is much further away from
the origin than the path in Figure 6(b). As a result, the classifier expects the
path to be much longer, and has more tolerance for those paths that are longer.

These results show that a simple path analysis system that is configured to allow
90% of human traffic could be defeated 89.25% of the time by bots. By using
relatively simple machine learning techniques, bots can generate paths that have
simple curves and varying path velocities. This lowers the classifiers F-score (the
overall measure of performance) possible to 0.649. In total, using path length
and mouse velocity as features, only 50.1% of the paths were able to be correctly
identified.
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The results can be summarized as follows:

————Human Paths————
True positives: 90.98%
False positives: 9.02%

————Generated Paths————
True negatives: 10.75%
False negatives: 89.25%

————General Statistics————
Total paths detected as human: 18023

Total paths detected as bot: 1977
F-score: 0.649324
Accuracy: 0.50865

6 Threats to Validity

There are several possible validity threats with this project. One threat is that
our method may not accurately represent how CAPTCHA companies actually
detect bots. Although several CAPTCHA companies list mouse movement as
an attribute that is examined when determining if the user is a computer or
human, the method of detection and techniques used is not described in detail
in the existing research literature. Many of these companies intentionally keep
these aspects of their software secret to make defeating CAPTCHAs harder.
Thus, the goal of this project is to demonstrate that attackers can take a generic
approach to replicating human behavior without any special knowledge of what
parameters the CAPTCHA is monitoring.

Another possible threat is the size of dataset used for this project. Although the
mouse movements are generated from human users, the dataset only contains the
input from a relatively small sample set of users. Different users might have more
widely varying patterns to their input. While this does to some extent modify
the results that the deep learning will produce, the expected results should still
be similar enough to a human to bypass classifiers.

While there may be other classifiers that are more accurate and efficient, this
research is to show the feasibility of using common-place classifiers to defeat
CAPTCHAs. Other more advanced learning algorithms will likely become more
common in the future.

7 Related Work

Breaking image and text based CAPTCHAs with machine learning is a well-
researched topic. A study from 2003 found that image recognition was able
to identify text CAPTCHAs 93% of the time [25]. Furthermore, many more re-
searchers have studied methods for breaking text-based CAPTCHAs [13,36,34,2].
In addition, image based CAPTCHAs have been reliably solved. One study was
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able to solve image reCAPTCHA’s with an accuracy of 71% [30]. Because interac-
tion based CAPTCHAs have only recently increased in popularity, less research
exists in this field.

One related article is Hacking Google reCAPTCHA v3 using Reinforcement
Learning. In this article, researchers used reinforcement learning to move a mouse
cursor to the check box of a reCAPTHCA v2 [3]. Using a grid, the researchers
would increase a ”reward” score for the algorithm as the mouse was moved in a
grid closer to the target. However, this project did not have the goal of tricking
classifiers by replicating human input, but instead focused on simply reaching
the goal location using reinforcement learning.

Another area of related research is from the article Intrusion Detection Using
Mouse Dynamics [6]. In this article, the researchers use the Balabit Mouse Chal-
lenge Data Set [21] mouse movement data to identify different users to detect
when accounts are compromised. They do some useful analysis of the Balabit
mouse data [7].

In An Insider Threat Detection Approach Based on Mouse Dynamics and Deep
Learning, researchers used the Balabit Mouse Data Set to analyze human mouse
movement to detect unusual behavior in users. The researchers converted all of
the mouse movement paths and actions to images and analyzed the behaviors of
each of the different users using a convolutional neural network. The behaviors of
each of the users was compiled in order to analyze different aspects that uniquely
identified a user [22]. This project showed that mouse movements can be used
as a unique identifier for users.

Much research also exists from the other perspective of the detection of bots
attacking CAPTCHA systems. Some of these works simply attempt to recognize
web bots from human visitors ( [4], [5], [12], [16], [20], [29]). Others consider the
abilities and complexities of the bots and their detection evasiveness ( [19], [9],
[28], [37], [24]). Bot detection has also been performed using web logs ( [4], [16],
[17], [27], [29], [31], [32]) and mouse movement tracking ( [26],and [24]. Many of
these techniques are machine learning based for the purpose of detection. In this
work, we demonstrate that machine learning can be used to defeat mouse based
interaction models. Humanlike behavior including the performance of mouse
movements has been shown to be difficult to detect ( [24] and [23]).

8 Conclusion

Our work contributes to the understanding of online security and helps
CAPTCHA companies to better understand weaknesses with existing systems.
We use common machine learning algorithms to generate paths that are difficult
for a classifier to identify. This research helps further knowledge about potential
CAPTCHA vulnerabilities and provides motivation for companies to develop
methods to counter attacks, such as the attack presented in this paper.
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Provided that attackers can obtain a database of several thousand users’ mouse
movements, they could use mouse-movement as an attack vector to increase
their chances of successfully bypassing existing CAPTCHA services without the
need for human interaction or CAPTCHA solving services. Although mouse
movement might function as a possible variable that can be examined to filter
automated traffic, it should not be used as the sole identifying characteristic.
Through our framework, we demonstrate the ease with which attackers can by-
pass CAPTCHAs that only use mouse movement. Our 89.25% success rate of
tricking a classifier demonstrates that using mouse movement as a bot-prevention
technique should be used with caution.

For future work, we would like to include more features for the classifier. More
features would allow the classifier to potentially better identify paths. Some
features we could consider adding are path curvature, number of times the path
changes direction, or possibly starting/ending velocity. Another area of future
work would be to improve the classifier with different kernels. With a polynomial
kernel, we could obtain a more strict decision boundary for the classifier. This
would make it more difficult for bots to bypass the classifier. The path generator
model could also be advanced by incorporating more layers with larger filter
sizes. In addition, layers can be added to introduce randomness into the path to
make the output of the generator less regular.

Humanlike movements could also be combined with other metrics that could
be used in CAPTCHA bot detection technology. An extended framework could
take multiple data sources into consideration. Also, this framework could be
evaluated based on interation-based bot detection tools.
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