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Abstract—

The creation, execution, and maintenance of tests are some
of the most expensive tasks in software development. To help
reduce the cost, automated test generation tools can be used to
assist and guide developers in creating test cases. Yet, the tests
that automated tools produce range from simple skeletons to fully
executable test suites, hence their complexity and quality vary.

This paper compares the complexity and quality of test suites
created by sophisticated automated test generation tools to that
of developer-written test suites. The empirical study in this paper
examines ten real-world programs with existing test suites and
applies two state-of-the-art automated test generation tools. The
study measures the resulting test suite quality in terms of code
coverage and fault-finding capability. On average, manual tests
covered 31.5% of the branches while the automated tools covered
31.8% of the branches. In terms of mutation score, the tests
generated by automated tools had an average mutation score
of 39.8% compared to the average mutation score of 42.1%
for manually written tests. Even though automatically created
tests often contain more lines of source code than those written
by developers, this paper’s empirical results reveal that test
generation tools can provide value by creating high quality test
suites while reducing the cost and effort needed for testing.

I. INTRODUCTION

Since the release of low quality software has serious
economic and social consequences [1], software testing is
commonly used throughout the software development process
to identify defects and establish confidence in program cor-
rectness. Kochhar et al’s recent investigation of over 20,000
GitHub projects revealed that over 61% of the projects include
test cases [2]. Even though testing is both valuable and preva-
lent, the creation, execution, and maintenance of tests is one of
the most expensive aspects of software development — often
comprising more than 25% of the total development costs [3].

Traditionally, test cases are manually written by software
developers and/or members of a quality assurance team. Man-
ual creation of a high quality test cases requires human effort
in terms of thought and time. This effort can be prohibitive in
large projects, which often necessitate the most testing [2]. As
an alternative to manually writing test cases, many automatic
test case generation tools (e.g., [4]-[6]) are now available to
help developers test their software. However, the quality of
the test cases generated by these tools varies [7]-[9], and it is
unclear how the test suites of automatic test generation tools
compare to those that are manually developed.

When given sufficient time and resources, developers can
often manually implement high-quality test cases that exercises
the majority of the application’s features and covers its source
code. Yet, the focus of the test cases may vary depending
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on the software developer, the goals of the project, and/or the
standards of the company or open-source community [2]. Some
developers may write test cases with the goal of increasing
the coverage of the code, particularly in terms of statements
or branches. Others may focus test cases on code that is likely
to fail, most commonly executed, or “important” according
to other standards [10]. In any case, as the complexity and
number of features of a program increases, manually writing
test cases becomes expensive [11].

Although there are tutorials that explain how to write JUnit
test suites (e.g., [12]), there is no well-established standard
for writing test cases, thus making the testing process even
more challenging for developers. Instead of, or in addition to,
manually implementing test cases without rigorous guidelines,
developers may employ automatic test case generation tools
that could reduce the time and cost associated with testing
while also improving code coverage. Many automatic test
suite generators currently exist. Some tools, like the MoreUnit
plugin for Eclipse [13], generate test case stubs for the method
that is currently highlighted by the cursor. Alternatively, tools
such as CodePro [14], EVOSUITE [4], JCrasher [6], Palus [15],
Randoop [5], and TestEra [16] can generate complete test
suites that need little to no modification prior to execution.

Automatic test case generation tools use both deterministic
(e.g., hard-coded rules and regular expressions) and learning-
based (e.g., randomized or evolutionary) algorithms to produce
test cases based on particular strategies, thereby avoiding the
subjectivity and wide variation in styles commonly found in
manually generated tests. Test suite generators also have the
potential to significantly reduce the amount of human time and
effort required of the developer to create the test suite.

While goals, company policy, and/or community standards
may influence the quality of manually implemented test suites,
automatically generated ones are similarly affected by both
the choice of the tool and the configuration of the tool’s
parameters. Test suite quality is frequently measured based
on the amount of code covered and on the fault-finding ability
of the test suite. Code coverage is a structure-based criterion
that requires the exercising of certain control structures and
variables within the program [17]. A fault-based test adequacy
criterion, on the other hand, attempts to ensure that the
program does not contain the types of faults that developers
inadvertently introduce into software systems [18].

A common type of test quality evaluation, in both indus-
trial and academic work, leverages structurally-based criteria
that require the execution of a statement or branch in a
program [19]. Alternatively, mutation testing is a fault-based



technique that measures the fault-finding effectiveness of test
suites on the basis of induced faults [18], [20]. Originally pro-
posed by DeMillo et al. [18], mutation testing is a well-known
technique that evaluates the quality of tests by seeding faults
into the program under test; each altered version containing a
seeded fault is called a mutant. A test is said to kill a mutant
if the output of that test varies when executed against the
mutant instead of the original program; the mutation score is
the ratio of killed mutants to generated mutants. Mutants of the
original program are obtained by applying mutation operators.
For example, a conditional statement 1f (a < Db) results in
multiple mutants by replacing the relational operator < with
valid alternatives such as <= or !=. Prior studies have used
mutation adequacy to experimentally gauge the effectiveness
of different testing strategies [21]-[24].

When confronted with the wide variety of non-standardized
manual testing strategies and complex automated test gen-
eration tools, real-world software developers face the chal-
lenge of defining a strategy for developing quality software.
Through an empirical study of automatically and manually
generated test suites for ten real-world open-source programs
(e.g., Netweaver and Jsecurity), this paper characterizes and
compares the test suites, providing useful insights for both
researchers and practitioners. With a focus on the time required
to automatically create the test suite and the statement, branch,
and mutation scores of the tests, the experiments compare
the manually created tests with those that are automatically
generated by two tools, CodePro and EVOSUITE.

Although automatic test generation requires far less human
time and effort than manual test generation, this time savings
may not be worthwhile if the quality of the resulting test
suites is poor in terms of coverage or fault-finding capability.
Alternatively, automatically generated tests may not be as
useful as manually implemented ones if they are too complex
or difficult to maintain. Subsequently, this paper additionally
examines the complexity and size of the original program and
both automatically and manually generated test. Finally, we
point out the practical benefits and challenges associated with
using automatically generated tests instead of manually created
ones.

In summary, this paper’s main contributions are:

e An examination of the techniques used in sophisticated
automatic test case generation tools (Section II);

e An empirical analysis of existing manually written test
suites for open-source applications (Section III);

e An empirical analysis of automatically generated test suites
for open-source applications (Section III);

e A comparison of test suites that are both manually written
and automatically generated (Section III);

e A discussion of the benefits and drawbacks of using
automatic test case generation tools (Section IV).

II. TEST CASE GENERATION TECHNIQUES
This section discusses the processes of writing test cases
manually and using automatic test case generation tools. We
also describe CodePro and EVOSUITE, the automatic test case
generation tools that are empirically studied in this paper.

A. Manually Written Tests
Test suites are most often written manually, either by the
developers themselves or through a quality assurance team.

While companies may have their own standards and goals
that are followed when writing test cases—such as high
levels of statement or branch coverage (e.g. [25], [26])—no
well-established patterns exist to help standardize test writing
practice throughout the software development industry. Thus,
the methods and styles of writing individual tests, fulfillment of
coverage and fault-finding goals, and the ordering of test suites
are often left to industry requirements or personal preference.

B. Automatically Generated Tests

Due to the high cost and inconsistencies introduced when
developing test suites by hand, automatic test suite generation
research is on the rise. In the past, the writing of test cases
was left as an afterthought, and their implementation was the
responsibility of a separate quality assurance team rather than
the developer. This led to a disconnect between the code and
the tests. However, in recent years, there has been a move
towards a more involved test development system in tandem
with the development process [27]. This movement includes a
focus on creating unit tests for code as it is developed, ensuring
that code always passes tests, thereby improving the quality
of the code [28]. Although this improvement in test creation
processes successfully improved the reliability of the code, the
cost of human time and effort needed to manually write high
quality tests increased as programs became more complex [11].

While many different techniques have been used to au-
tomatically generate tests, they can be divided into two key
categories: Deterministic and Learning-Based.

1) Deterministic: Deterministic automatic test case gener-
ators normally analyze method parameters and basic paths to
create unit tests. The simplest of these tools statically analyze
the basic source code paths alone and create skeletons of
needed tests. For example, JUnitDoclet [29] uses Javadoc to
parse the source code of the application classes. From the
collected information, JUnitDoclet writes test cases and test
suites where there is a test suite for each Java package, a test
case for each public, non-abstract class, and a skeleton test
method for each public method.

While these test skeletons are helpful, more sophisticated
tools have been developed that create more complete tests by
taking the method parameters into consideration. CoView [30],
for instance, is a commercial Eclipse plug-in tool that analyzes
Java source code and calculates the number of data-driven and
cyclomatic paths in a method. Each path is one that should be
verified via a unit test. CoView then analyzes existing JUnit
tests to determine which paths are and are not being tested.
This determination is made with instrumented bytecode that
calculates path and branch coverage. CoView then creates the
missing JUnit tests for the developer. The developer will have
to modify parts of the tests, such as the assertions, but the tool
helps the developer by identifying the minimum number of
tests that should be created given parameter options and paths.

Other tools are capable of generating fully executable tests
that require no modification: for instance, this paper considers
CodePro [14], an Eclipse plug-in tool with many powerful
code analysis features and metrics. Given an input class, the
tool creates a corresponding test class complete with multiple
test methods for each input class method. The tool analyzes
each method and input argument with the goal of generating
tests that exercise each line of code using a combination of
both static analysis and by dynamically executing the code to
be tested. [31]. CodePro was a Jolt Award finalist and has been
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studied in terms of the types of tests it can write in comparison
to other tools [32]. Yet, to the best of our knowledge, no work
has compared the overall quality of the test cases it creates.

2) Learning-Based: Another set of automatic test case
generation tools use learning algorithms to improve the overall
quality of the generated test suites. The two top-ranked tools
in this area are Randoop and EVOSUITE [9]. Using feedback-
directed random test generation, Randoop automatically cre-
ates tests for Java classes in JUnit format [5]. This technique
randomly generates sequences of methods and constructor
invocations for the classes under test and uses the sequences
to create tests. Randoop then executes the sequences it creates
and uses the results of the execution to create more assertions,
attempting to avoid redundant and illegal inputs while guiding
towards generation of tests that lead to new object states.

EVOSUITE [4], which is used in this paper, ranked first in
SBST 2013 Tool Competition [9] and similarly uses a learning
algorithm to generate a full, executable test suite. The tool’s
evolutionary search approach evolves whole test suites with
respect to both coverage and mutation scores. Optimization
with respect to a coverage criterion rather than individual
coverage goals helps the algorithm to not be adversely in-
fluenced by difficulty of infeasibility of individual coverage
goals. Repeated mutation testing is used to produce a reduced
set of assertions that maximizes the number of seeded defects
in a class that are revealed by the generated test cases.

III. EMPIRICAL EVALUATION

Given the many different techniques for generating test
suites, the primary goal of this paper’s empirical study is to
compare the quality and complexity of the resulting test suites.
We implemented the empirical evaluation approach as shown
in Figure 1. As can be seen in the figure, existing programs are
fed into automatic test suite generators to create executable test
suites. These test suites are then compared to the programs’
associated, manually written test suites based on six metrics.

The goals of the experiments are as follows:

e Determine the time of automated test case generation along
with the size and time of execution of the test suites

e Compare the test suites, automatically generated and man-
ually written, to the case studies’ source code

e Analyze the quality of these test suites based on branch
coverage and fault-based mutation scores

A. Experiment Design and Metrics

All experiments were performed on GNU/Linux worksta-
tions with kernel 3.2.0-44, a 2 GHz Intel Corporation Xeon
E5/Core i7 processor and 15.6 GB of main memory.

TABLE I: Benchmark Programs and their Properties

Program LOC Cyclomatic Complexity

Netweaver 17953 2.82
Inspirento 1769 1.76
Jsecurity 9470 2.05
Saxpath 1441 2.10
Jni-inchi 783 2.05
Xisemele 1399 1.29
Diebierse 1539 1.74
Lagoon 6060 3.52
Lavalamp 1039 1.50
Infe 1294 1.38

Case Study Applications:

Ten programs were identified from the SF110 code
suite [33]. The case study applications were selected due
to their size, the existence of associated manually devel-
oped JUnit test cases, and their use in tuning EVOSUITE
parameters for mutation and test generation, one of our test
suite generation tools. Table I provides a list of the selected
SF110 programs with their respective lines of code (LOC)
and average cyclomatic complexity per method. LOC and
cyclomatic complexity were measured using JavaNCSS [34].

Netweaver is the largest program under consideration with
nearly 18K lines of code. Netweaver has an average Cyclo-
matic Complexity (CC) of 2.82 across all methods, which
implies that for a specific method M, 1) CC}, is an upper
bound for the number of test cases that are necessary to achieve
a complete branch coverage within the method M, and 2)
CC)y is a lower bound for the number of paths through the
control flow graph. Assuming each test case takes one path,
the number of cases needed to achieve path coverage is equal
to the number of paths that can actually be taken, ignoring
infeasible paths. The smallest program, Jni-inchi has 783 lines
of code with an average cyclomatic complexity of 2.05.

After the case study applications were identified and an-
alyzed, automated test tools EVOSUITE and CodePro were
used to generate test suites [4], [14]. As EVOSUITE is non-
deterministic and learning-based, ten sets of tests were gener-
ated for evaluation, and the standard deviation is given across
the ten test generations for all EVOSUITE related results.
EVOSUITE was configured using its default values [35].
Evaluation Metrics:

The manually written test suites and automatically gener-
ated test suites are compared based upon the time to generate
test suites, the number of test cases generated, the time
to execute generated tests, lines of code in the benchmark
application, complexity of the benchmark application, branch
coverage of generated suites, and the mutation score of gener-
ated suites. To perform these evaluations, three tools are used.

All tests are written or generated in JUnit form. The time
to generate test cases, number of test cases generated, and the
time to execute the test suite are measured using the JUnit tool.
We also measure the non-commented LOC from the source
code of the benchmark applications using JavaNCSS [34].

Following the automatic generation of test cases, Ja-
coco [36] is used to calculate branch coverage of the tests. Ja-
coco calculates branch coverage by instrumenting all branches
at the byte code level through ASM, an all purpose Java
bytecode manipulation and analysis framework. We also use
MAJOR [37] to calculate fault-based mutation scores given the
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case study and associated tests. MAJOR is a Java compiler-
integrated mutator that serves as a mutation analysis back-
end for JUnit tests. It provides a domain specific language to
configure the mutation process, although we used its default
values for our experiments.

B. Experiments and Results
Experiments were run to compare how test suites are
generated using automated tools, the differences between the

resulting test suites in terms of size and complexity, and the
over all quality of the generated test suites.

1) Generating Test Suites : In the first set of experiments,
we tracked the time required to generate the test suites, the
number of test cases generated, and the execution time of
the resulting test suite. Figure 2 displays the time required to
generate each test suite using the two automatic test case gener-
ation tools, CodePro and EVOSUITE. In the case of Netweaver,



CodePro completed test suite generation in approximately 51
minutes whereas EVOSUITE required 89 minutes. This was
a small difference of 1.7% compared to Xisemele, for which
CodePro generated a test suite in just 13 seconds compared to
32 minutes from EVOSUITE. The time needed by EVOSUITE
was 148% greater in this case. On average, EVOSUITE took
78% more time in test generation compared to CodePro.

Next, the number of test cases generated per method was
analyzed. Figure 3 shows the number of tests generated for
the ten case study applications, CodePro produced an average
of 5% more test cases than EVOSUITE and 16.4 % more than
were written manually. EVOSUITE produced, on average, 4%
more than were created manually.

The time to execute the generated test suites was also
evaluated. Figure 4 reveals the execution time of manual,
EvVOSUITE, and CodePro test suites, with test execution times
ranging from between 2.1 to 25.5 seconds. In Figure 3, the
Netweaver test suite contains the most test cases. However,
the Netweaver CodePro test suite does not take the longest
to execute. Rather, the second largest test suite, Jsecurity by
EVOSUITE, does. This may be the result of skeleton-like
test cases that CodePro produces. CodePro’s skeleton-like test
cases provide comments for developers to find where to write
test cases, forming a hybrid approach to the automated and
manual world of testing.

2) Comparing Generated Tests to Case Studies: The LOC
for the generated test suites and the application source code
were also compared. Figure 5 shows that CodePro generates
more LOC than either manual or EVOSUITE test suites. As
shown in Figure 3, CodePro generated the most tests out of
the automated test generators. In a comparison between the two
graphs, a close correlation can be seen between the LOC and
the number of tests. For example, Netweaver contains 17953
LOC, and CodePro produces 3513 test cases for the appli-
cation. Likewise, the other applications and their tests suites
share this same trend. As the size of the application increases,
the number of tests will increase as well. In proportion to the
original lines of code, the number of test cases are greatest
with CodePro, then EVOSUITE, and then manual.

3) Quality: Manual versus Generated: In this study, both
branch coverage and mutation scores were measured for each
of the generation test suites. The branch coverage for manually
written test suites varied greatly, but was the only method
able to attain a score over 70% with Lavalamp and Xisemele.
Both applications contained the least number of test cases with
manual as evidenced by Figure 3. Overall CodePro had higher
branch coverage scores than EVOSUITE or manual. This could
indicate a direct relationship between the number of tests and
the branch coverage.

The relationship between the number of tests and the
branch coverage for each generated test suite was furthermore
examined. In comparing Figure 3 and the branch coverage,
manual test suites increased in branch coverage as the number
of test cases increased. When evaluating EVOSUITE, the trend
line has a low RZ value at 0.184, but begins in a similar
trend to manual and CodePro, but actually drops in branch
coverage for the two larger test suites. The branch coverage
in comparison with the number of tests indicates that CodePro
branch coverage drops as the number of generated test cases
increases. Larger, more complex applications may require
more tests to be written to increase the branch coverage.

Our next experiment evaluates the relationship between
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Fig. 6: Mutation Score compared to Branch Coverage for test
suites generated by CodePro.

LOC and branch coverage for each of the generated test suites.
EvOSUITE, CodePro, and manual test suites demonstrated a
similar trend in the decrease of Branch Coverage as the LOC
of the application code increased. Only CodePro displays a
larger increase in branch coverage by at least 27% more for
the largest program, Netweaver. Despite generating more tests
in proportion to the application source code size, CodePro did
not meet the quality of the tests generated by EVOSUITE or
the manually written test suites.

For the mutation score, EVOSUITE attained the highest
scores for five of ten applications. However, Diebierse scores
ranged dramatically between 18% and 40%. CodePro resulted
in the worst mutation scores, acquiring a 0% mutation score
for lagoon, Saxpath, and Xisemele. This is due to the skeleton-
like tests that CodePro often creates. While these tests can lead
to the execution of branching behavior due to the tool’s goal
of generating test cases that exercise each line of code, the
oracles, when they exist, are often poorer than EVOSUITE’s
intelligent oracles and thus miss capturing faults. EVOSUITE,
on the other hand, was able to generate test suites averaging
between 33.7% and 77.1% for these applications. Manual tests
remained between 18.3% and 56.5% mutation scores for the
applications, while CodePro’s mutation scores ranged between
0% and 41.3%.

Figures 6, 7, and 8 compare the branch and mutation score
for manually generated test suites, EVOSUITE’s-generated
suites, and CodePro-generated suites, respectively. In general,
the mutation score increased as the branch coverage increased.
Figure 6 displays a much lower R? value at 0.137, but the data
indicates overall that the mutation score neither increases nor
decreases with higher branch coverage. This can be explained
because the mutation scores were all much lower than manual
and EVOSUITE mutation scores. With exception to the outlier
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Fig. 5: Non-commented lines of code for automatically generated tests and manual tests compared to case study source code.

of a 40% mutation score, the trend would otherwise indicate
that the mutation score increases as the branch coverage
increases.

For each comparison, the Kendall 7 coefficient and Pear-
son’s product-moment correlation were calculated. While there
is a possibility of rank ties when calculating Kendall’s 7 values,
none were identified in this work. In comparing the coverage
and mutation scores for CodePro, Kendall 7’s coefficient is

-0.0698. The Pearson’s test gives a correlation of -0.275. For
EVOSUITE, the Kendall 7’s coefficient is 0.111. The Pearson’s
test gives an overall correlation value of 0.212. Manually
written tests earn a Kendall 7 value of 0.135. The Pearson’s
test reveals an overall correlation of 0.155.

The Kendall 7 measurement of correlation, calculated in
R, falls between -1 and 1, representing a strong negative and
strong positive association, respectively, and O showing no cor-
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suites created manually.

relation. We use an accepted interpretation of 7, whereby the
qualitative terms “small”, “medium” and “large” correspond
to 0.1, 0.3 and 0.5 [38]. For CodePro, there is essentially
no correlation between branch coverage and mutation scores.
EVOSUITE demonstrates a small correlation, and manually
written tests have a slightly larger, but still small, correlation.

The Pearson’s product-moment correlation is similarly be-
tween -1 and 1. A value of 1 implies that a linear equation
describes the relationship between X and Y perfectly, with
all data points lying on a line for which Y increases as
X increases. A value of -1 implies that all data points lie
on a line for which Y decreases as X increases. A value
of 0 implies that there is no linear correlation between the
variables. The results between the Kendall 7 and Pearson’s
correlations agree for all three sets of data. While correlations
do exist between the branch coverage and mutation scores for
EVOSUITE and manually written tests, they are small. The
correlation between the branch coverage and mutation scores
of CodePro are slightly negative.

For full result analyses, including full Kendall 7 analyses
and Pearson correlation summaries—in addition to more re-
sults and graphs from our evaluations related to LOC of the
generated test suites, cyclomatic complexity of the test suites,
and cyclomatic complexity of the application source code—
please refer to: http://cs.uccs.edu/~kjustice/QSIC2014/.

C. Threats to Validity

There are several threats to the validity of this work.
First, EVOSUITE was used to generate test suites using its
default configuration values. While tuning can have impact
on the performance of a search algorithm, in the context of
test data generation, it is difficult to find good settings that
significantly outperform the “default” values suggested in the
literature [35]. Thus, the default values were used. Presented
results in this paper represent five test suites generated by
EVOSUITE. Although more test suites were generated for a
subset of the applications, the average and standard deviation
remained the same given more executions of EVOSUITE, and
thus, five generated test suites can be viewed as sufficient.

Second, the determination of the quality of software tests
can be considered a subjective measurement. Although muta-
tion score and coverage are two ways to measure test suite
quality, that does not consider the readability of the test cases.
If the developers who need to view tests in order to diagnose
defects cannot understand what the tests do, then the human
time and effort could be substantially increased.

Third, the tools used for coverage and mutation analysis
also lead to a potential internal threat to validity. Jacoco was
used for all coverage analysis, and MAJOR was used for
mutation analysis. Jacoco, a well-established coverage monitor
for Java programs, is based on Emma, another standard tool for
analyzing Java programs [36]. MAJOR [37] is an experimen-
tally verified (e.g., [24]) and well tested (e.g., [39]) mutation
testing tool integrated into the Java compiler. However, other
options such as PIT [40] could be used in future comparisons.

IV. DISCUSSION

In comparing LOC and number of test cases, we observe
that higher proportions of test cases compared to original ap-
plication code does not necessarily imply that either mutation
score or branch coverage will be high. Especially in the case
of CodePro, in which many tests are produced in a skeleton-
like fashion, the mutation scores and branch coverage are much
lower than EVOSUITE and manual tests. However, as indicated
earlier, the skeleton approach to generation gives developers a
template to easily modify and implement. Automated test suite
generation can aide the developer in covering a large portion
of the application, allowing developers to reduce the time and
effort spent in identifying source code to be covered by tests
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and then enhancing the tests later. Although this feature could
be desirable for developers who want help in achieving high
coverage, it will still require more manual effort than fully
automated test generation tools such as EVOSUITE.

As seen from the results, learning-based test suite gener-
ation tools are more helpful in creating executable test cases
that do not need modification prior to use. These tests attain
coverage and mutation scores that are only slightly lower than
manually written test suites. On average, the branch coverage
scores are comparable, and mutation scores are only about 1%
less than manual tests. However, the modifiability and readabil-
ity of the resulting tests varies. For example, CodePro tends
to create tests that build empty object-oriented tests that are
executable, but require the developer to generate complete test
oracles. Thus, CodePro’s mutation scores especially are lower
than those written by a human or through a learning-based tool.
EVOSUITE, on the other hand, creates more complete tests
focusing on exceptions, and parameter paths. As EVOSUITE
takes potential faults into consideration as it “grows” tests, its
mutation scores are higher. Manual tests are generally written
with the functionality of the program itself in mind. While
all three processes have their benefits, the learning capability
of tools like EVOSUITE to achieve high-quality results in
little time gives a strong initial set of tests that can then be
broadened as developers enhance their knowledge of the code
under test.

V. RELATED WORK

Since this paper focuses on empirically comparing man-
ually implemented and automatically generated test suites, it
is most directly related to Bacchelli et al.’s evaluation of the
effectiveness of manual and automated test data generation [7].
However, there are several distinctions between our paper and
this prior work. While the experiments in this paper focus
on the test suites for ten case study applications, Bacchelli et
al. only consider select classes that implement data structures
like LRUHashtable. In contrast to the use of manual tests
that were implemented by real-world open-source software
developers, the manually-coded test cases in Bacchelli et al.’s
were created by the authors themselves. Moreover, Bacchelli et
al. use Randoop [5] and JCrasher [6], instead of picking EvVO-
SUITE, the current state-of-the-art test data generation tool [9].
Finally, it is important to note that even though Bacchelli et al.
report coverage and mutation scores, they neither investigate
the correlation between coverage and mutation nor perform a
comprehensive statistical analysis of the results. In addition,
it is possible to make similar comparisons between our paper
and the experimental work of Assylbekov et al. [41].

The design of the our paper’s experiments is informed,
in part, by the experimental design and results presented
by Inozemtseva and Holmes [42]. Like our paper, this prior
work also uses real-world programs to empirically investigate
the relationship between code coverage and mutation score.
However, the primary intent of our work is different than that
of Inozemtseva and Holmes: while they investigate the effec-
tiveness correlation for the test suites that come with programs,
we consider both manually and automatically generated tests.
Moreover, it is important to note that while their paper uses
PIT [40] for fault seeding, our experiments use MAJOR—the
only mutation testing tool whose mutants are currently known
to be statistically similar to real-world faults [24].

Our paper’s experiments are also partially influenced by

the design and results reported on by Gopinath et al. [43].
This paper is similar to ours because it also investigates
the correlation between a test suite’s coverage and mutation
score. In addition, Gopinath et al. use both manually and
automatically generated test suites for more programs than
we do; yet, since our experimentation framework is easy to
apply to new programs and our presented results demonstrate
promise, we will scale our study to Gopinath et al.’s level in
future work. Moreover, even though EVOSUITE automatically
generates better test suites than Randoop [9]—thus motivating
its use in our experiments—Gopinath et al. use Randoop to
create test suites. In addition, while Gopinath et al. employ PIT
to seed faults into their case study applications, we decided to
use MAJOR since recent results indicate that this tool’s faults
are a valid substitute for real faults [24].

Ultimately, the results from Inozemtseva and Holmes [42]
and Gopinath et al. [43], in conjunction with those in this
paper, present a complementary understanding of the effec-
tiveness of automatically and manually generated test suites.
It is also important to remark that, while Just et al. [24] are the
first to establish a statistical correlation between a test suite’s
mutation score and its effectiveness at detecting real-world
faults, the purpose of that work is not to develop a full-featured
understanding of the quality characteristics of automatically
and manually generated test suites—the aim of our paper.

It is important to note that all of the aforementioned related
work focuses of the empirical and technical aspects of test
suite effectiveness that are not related to human-centric issues.
In part, our paper was motivated to investigate the complexity
and understandability of automatically and manually generated
test suites by Fraser et al.’s empirical results revealing that au-
tomatically generated tests do not always help software testers
find more defects in a program [8]. While Fraser et al. also
consider coverage and mutation scores for automatically and
manually generated test suites, they only use one automated
test suite generator, EVOSUITE, while we additionally consider
tests created with a deterministic tool called CodePro.

In contrast to our focus on manually and automatically gen-
erated test suites for real-world open-source applications, other
related work has considered coverage and mutation scores for
test suites written by students. For instance, Aaltonen et al.
observe that automated grading programs may reward students
for high-coverage test suites that actually have poor defect-
revealing potential [44], concluding that a combination of
coverage and mutation scores may be the best way to give
students accurate feedback on the quality of their test cases.
In addition, Shams and Edwards experimentally observe that
mutation scores are lower than coverage values for student-
implemented test suites [45]—a result that corresponds to what
we found for open-source programs.

There are many past empirical studies that compare differ-
ent coverage criteria. For instance, Frankl et al. experimentally
compare the all-uses dataflow criterion to mutation adequacy,
finding that, although mutation testing is more expensive that
dataflow testing, neither approach was obviously better than
the other [46]. As an additional example, Gligoric et al. also
use mutation testing to empirically compare the effectiveness
of non-adequate test suites that aim to fulfill different adequacy
criteria, revealing that branch coverage and intra-procedural
acyclic path coverage are the best [47]. Namin and Andrews re-
port on an experimental investigation of test suite effectiveness,
concluding that only non-linear relationships exist between



test suite size, code coverage, and test effectiveness [48],
thus motivating our search for non-linear fits in our own
analyses. Finally, Li et al. compared four test adequacy criteria,
finding that mutation testing is the best at finding seeded
faults and minimizing the number of test required to ensure
adequacy [49].

In addition to the aforementioned study by Just et al. [24],
there have been several papers that examine the role that
mutation testing should play in the experimental evaluation of
testing strategies. Like Just et al., Andrews et al. also suggest
that mutation analysis can be used to empirically compare
testing methods [22]. In addition, Do and Rothermel report that
mutation analysis can suitably support the study of regression
test suite prioritization techniques [23]. There has also been
much work in the design, implementation, and evaluation of
mutation testing tools, with MuJava [50], Javalanche [51],
PIT [40], and MAJOR [39] representing those most commonly
used in practical and experimental settings. A comparison of
mutation testing tools by Delahaye and du Bousquet suggests
that MAJOR is ideally suited for empirical studies [52], thus
motivating our incorporation of this tool into our experiments.

VI. CONCLUSIONS AND FUTURE WORK

The creation, execution, and maintenance of tests is one
of the most expensive aspects of developing software, but
tools such as CodePro and EVOSUITE can aide developers
in reducing the cost of this process. This paper examines the
tradeoffs of using automatically and manually generated tests.
The time for test suite generation, number of tests produced,
time of execution of the resulting test suites, and quality of the
test suites are evaluated. Quality is measured by the branch
coverage and mutation scores of the resulting test suites.

The results indicate that automated test case generation
tools can quickly generate more tests than are provided in
manual test suites. While CodePro creates an average of
5% more test cases than EVOSUITE and 16.4% more than
were written manually and EVOSUITE produced, on average,
4% more than were created manually, CodePro’s test quality
was low when both branch coverage and mutation score
were considered. There was little correlation between branch
coverage and mutation score for these test suites overall.
EVOSUITE’s test suites, however, were positively correlated
in quality between branch coverage and mutation score with
an R? value of 0.4. Manually generated tests demonstrated
an even stronger correlation between branch coverage and
mutation score with an R? value of 0.64.

While some manually written tests were of higher quality
overall in terms of branch coverage and mutation scores,
the results indicate that more sophisticated, learning-based
automated test generation tools such as EVOSUITE can be used
to produce test suites of similar quality on average compared
to manual tests. On average, manual tests covered 31.5% of the
branches while EVOSUITE covered 31.86% of the branches.
In terms of mutation score, EVOSUITE’s generated tests had
an average mutation score of 39.89% compared to the average
mutation score of 42.14% for manually written tests. Given
the time reduction of using an automated tool compared to
hand writing tests, these results are significant and encourage
the use of automated tools for test production.

In future work, we will increase the number and types of
case study applications under consideration. There are also
a number of other tools including Randoop, T2, and DSC

that we would like to include in our calculations. These three
automated test case generation tools have proven competitive
in producing high quality tests. Finally, we will consider other
quality analysis measurements such as statement coverage and
modified condition/decision coverage and tools such as PIT to
back up our results and perform further analysis.

For full result analyses, additional data visualizations,
statistical correlation summaries, and instructions for repli-
cating our empirical study please refer to our web page:
http://cs.uccs.edu/~kjustice/QSIC2014/.
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