Continuous Verification of Open Source
Components 1n a World of Weak Links

Thomas Hastings and Kristen R. Walcott
Department of Computer Science
University of Colorado Colorado Springs
Colorado, United States
{thasting kjustice } @uccs.edu

Abstract—We are heading for a perfect storm, making open
source software poisoning and next-generation supply chain
attacks much easier to execute, which could have major im-
plications for organizations. The widespread adoption of open
source (99% of today’s software utilizes open source), the ease of
today’s package managers, and the best practice of implementing
continuous delivery for software projects provide an unprece-
dented opportunity for attack. Once an adversary compromises a
project, they can deploy malicious code into production under the
auspicious of a software patch. Downstream projects will ingest
the compromised patch, and now those projects are potentially
running the malicious code. The impact could be implementing
backdoors, gathering intelligence, delivering malware, or denying
a service. According to Sonatype, a leading commercial software
security company, these next-generation supply chain attacks
have increased 430% in the last year and there is not a good way
to vet or monitor an open-source project prior to incorporating
the project.

In this paper, we analyzed two case studies of compromised
open source components. We propose six continuous verification
controls that enable organizations to make data-driven decisions
and mitigate breaches, such as analyzing community metrics and
project hygiene using scorecards and monitoring the boundary
of the software in production. In one case study, the controls
identified high levels of risk immediately even though the package
is widely used and has over 7 million downloads a week. In both
case studies we found that the controls could have prevented
malicious actions despite the project breaches.

Index Terms—Secure Software Development, Open Source
Components, Code Re-use

I. INTRODUCTION

We are heading towards a perfect storm for insecure and
malicious software to make its way into production software
stacks. The rise of open-source component utilization, the lack
of project vetting techniques, and the overwhelming sense to
deliver value faster have left us vulnerable to attack. Open-
source software is utilized in 99% of software applications
today [1]. Unfortunately, many software engineers rely on
limited defensive techniques when vetting software projects,
such as looking at recent activity within a project before
incorporating the project into their project’s software baseline
[2]. This method offers very little protection for software
projects.

Currently, there is no good way to manage the weak
links of open-source packages [3]. To make matters worse,
best practices are unwittingly putting organizations at risk.

One reason is that open source components allow developers
to incorporate new features seamlessly and effortlessly with
only minor modifications. This code re-use enables software
engineers to deliver value faster to their customer base. This
practice is encouraged within organizations and is referenced
by the National Institute of Science and Technology (NIST)
in their publication for Secure Software Development [4] as
a best practice. It is no surprise that modern programming
languages have capitalized on the efficiencies of code re-use
from open source components and made it easier than ever by
providing package managers.

Many package managers use semantic versioning, allowing
developers to automatically pull the latest major, minor, or
patch versions of components each time they run a build.
This convenience is excellent for ensuring the software project
is always up to date with all the latest dependency releases,
but what happens when the newest release is malicious? As
more open-source projects adopt and implement continuous
integration (CI) and continuous delivery (CD) pipelines in their
builds, it will be easier than ever for an adversary to poison a
project and release the malicious code into the wild under the
auspiciousness of a simple patch.

There are over 5,000 open-source security advisories on
GitHub today [5]. The zero trust model assumes that every
project will have some security findings even without targeted
supply chain attacks. Therefore, we need better methods of
vetting and monitoring open source components throughout
the component’s life-cycle. We can no longer trust packages
straight off the internet, and we need to verify that the
packages are doing what they said they would do.

In our work, we develop methods for continuous verification
throughout a components life-cycle to provide insight for
understanding and monitoring the risk of incorporating open-
source components. We take a holistic approach to analyzing
components for risk of underlying vulnerabilities. We define
six controls that organizations can use to protect themselves
from malicious supply chain attacks. Specifically, we utilize
the controls to create a repeatable method to understand the
risk of incorporating an open-source component throughout
it’s life-cycle.

This paper makes the following contributions:

o Procedures for organizations to execute to understand

open-source component risks before incorporating (Sec-

tion III)

o An automated systems architecture vetting open-source
applications (Section IV)

o Discussion of insights that could lead to more refinement
in the way vetting happens for open source software
components (Section V)

II. BACKGROUND AND RELATED WORK

We took a multidisciplinary approach to solve our research
goals by leveraging lessons learned and research from the
fields of cyber security and cloud platform engineering in
addition to software engineering for a truly holistic solution
leveraging DevSecOps.

A. Development

Software supply chain attacks targeting open-source com-
ponents have increased 430% in the last year [6]. These
exploits continue to grow in frequency and magnitude. Over
the previous two years, this topic has become a priority
among organizational leaders and researchers. As a result, the
software community has identified weak links in packages [3],
created standards to highlight best practices for component
vetting [7], automated vulnerability look-ups for dependencies
[8], and widened the aperture for reporting vulnerabilities and
malicious packages [9].

GitHub, the owners of NPM, have double-downed on their
commitment to the NPM registry due to the increasing attacks
on NPM packages. GitHub is now requiring 2FA for NPM
package maintainers [10]. This is a step in the right direction as
researchers have identified that hacking 20 high-profile devel-
oper accounts could compromise half of the NPM ecosystem
[11]. Although it is not a complete solution as researchers have
identified six core weak links in the NPM ecosystem. One of
which is that maintainers are using expired domains for their
email accounts [3]

So, how do we overcome weak links in our supply chain?
The Open Source Security Foundation has been doing a lot of
research into the topic of software supply chain protection as
well. One of the projects we use extensively in our study is
their Security Scorecards for Open Source Projects. Although
we did not use all the metrics, the scorecards provided and
added a couple this research heavily influenced our research.
According to the researchers from Google, "The goal of
Scorecards is to auto-generate a ’security score’ for open
source projects to help users decide the trust, risk, and security
posture for their use case. This data can also be used to
augment any decision making in an automated fashion when
new open source dependencies are introduced inside projects
or at organizations” [7].

Understanding the package ecosystem and the community
support around a package is essential, but a more holistic view
is required to understand the actual risks before incorporating
open source packages. The MITRE Corporation has been a
faithful steward of maintaining two critical databases used
for static code analysis. The first database is the Common
Vulnerabilities and Exposures (CVE) database. This database

contains a list of known vulnerabilities in packages [12].
The second database they steward is the Common Weakness
Enumeration database. This database contains ”weakness types
for software and hardware and is used as a baseline for
weakness identification, mitigation, and prevention” [13].

We leverage the CVEs and the CWEs in our methods to
identify known vulnerabilities in the open-source component
and its dependencies. Then we use the CWEs to check for
known code signatures that allow the package to be compro-
mised if measures are not implemented to prevent malicious
attacks.

B. Security

The software community is not the only community han-
dling an unprecedented rise in cyber attacks or supply chain
exploits. The corporate information technology (IT) security
communities have been handling and defending malicious
attacks for decades. There is a couple of stand-out models in-
formation technology groups use to protect their organizations
from attacks. Many IT organizations understand what connects
to their networks, have a plan to manage those assets, practice
zero trust, and implement defense-in-depth.

NIST describes zero trust as, ”Zero trust (ZT) is the term
for an evolving set of cybersecurity paradigms that move de-
fenses from static, network-based perimeters to focus on users,
assets, and resources” [14]. NIST defines defense-in-depth as,
“information security strategy integrating people, technology,
and operations capabilities to establish variable barriers across
multiple layers and dimensions of the organization” [15]. Our
methods implement elements from zero trust using defense-
in-depth concepts by using automated tooling and policy
throughout the life cycle of an open-source component.

C. Operations

There is a new way to think about the operations life-cycle,
and some have called it the software development life-cycle
in the cloud age [16]. The premise is that organizations can
manage their IT operations using day 0, day 1, and day 2
nomenclatures. We leverage day 0, day 1, and day 2 in our
evaluation. Day 0 is the design phase where an organization
considers how or if it will incorporate a new open source
component into a software project. Once the decision had been
made to use the open-source component, we move into day 1
operations. Day 1 is what goes into actually incorporating the
component. This may include adding the component to the
package or vendorizing the component to make it available
to the organization [17]. Day 2 operations occur after the
package is included and running in production, this is when
maintenance and monitoring becomes a priority.

III. METHODOLOGY

We have taken the lessons learned from the corporate
information security community and applied those lessons to
help vet open-source software components. We evaluated our
methods using 2 case studies, one from NPM’s malicious

Day 0 Day 1 Day 2
® ® ® >
:C1 : 5 ,
:C2 o : i
c3 ' c6 ——
:C4

Fig. 1: Controls in the Life-Cycle

modules reports and one from RubyGems and ran a table-
top exercise using our methods with the events in each case
study. We identified at what stage our controls would have
recognized the packages as a potential problem on day 0, day
1, and day 2 as we see in figure 1.

In our research we use 6 controls. Each control can be used
independently or in succession to provide better risk mitigation
using a defense-in-depth approach. Our controls are grouped
into three risk categories based on relative ’knowness’: the
known knowns, the known unknowns, and the unknown un-
knowns [18].

A. The Known Knowns

We can learn a lot of information about the current state of a
project by looking at the package’s dependencies, source code,
and community. These four controls are used to understand the
current state of a package and the package’s community and
can inform the decision of whether or not to use the package.
These four controls will be used throughout the package’s life
cycle, beginning at day O.

C1: checks the package for known vulnerabilities in a
package’s dependencies and in the package itself. This is
accomplished by leveraging a query against the CVE database
using a tool like Depdendabot or Snyk.

C2: checks the source code for known weaknesses in the
code base using static code analysis, which leverages CWE
information.

C3: looks at the package’s community to understand
the makeup of the project’s maintainers. This control looks
at the number of companies maintaining a project and recent
activity within the last 90 days. Multiple companies supporting
a project and recent activity are signs of a healthy project.

C4: looks at the hygiene of the package. This con-
trol looks for dangerous workflows, signed-commits, signed-
packages, and branch protection.

B. The Known Unknowns

Once a package moves into Day 1 and has been included in
our software, we must leverage additional controls to protect
against the known unknowns. A core tenant of security tells
us to assume everything will be compromised at some point.
Whether by a dependency, a code update with a bug, or a
malicious maintainer.

CS5: is a policy that dictates that no open-source artifact
will be included, which is not built by a trusted source. The
open-source component’s source code will be forked and built

in-house, and the artifact will be stored in a central location.
When a new package version is released, we will ingest the
change, conduct a secure code review [19], and scan the code
using C1, C2, and C3. This is a heavy policy that gives the best
chance to detect a problem with a dependency, new code that
can be exploited, or code added by a malicious maintainer.
This is especially true when we can not trust that packages
published on sites such as NPM or RubyGems came from
their respective communities [10] [20].

C. The Unknown Unknowns

After a package has been built internally and ingested into
a software project, we need to protect that project from the
unknown unknowns of the package. These unknown unknowns
are malicious items we missed using the first five controls
and are typically identified during day 2 operations when the
package is in a running environment.

Cé6: is a network perimeter defense around the develop-
ment and production environment of the software project.
This perimeter runs at the network layer of the OSI model and
executes packet inspection. This control monitors the activity
of the software as it passes data over the network and onto
the internet. The control will act on unexpected changes in the
software’s behavior or when the software attempts to pass or
retrieve data from unknown sources.

IV. RESULTS

This section describes the results of our findings across the
use cases. We applied the methods to two components that
were compromised. The first component, UAParser.js, came
from the NPM ecosystem and the second, rest-client, came
from the RubyGems ecosystem. These components were prime
candidates because they averaged hundreds of downloads a
week.

A. Case Study: UAFarser.js

UAParser.js is a “JavaScript library to detect Browser, En-
gine, OS, CPU, and Device type/model from User-Agent data
with relatively small footprint” [21]. On October 23, 2021,
this NPM package was modified to include malicious code by
an outside actor using a maintainers’ compromised account.
The malicious code injected into the UAParser.js package
attempted to install coinminer, and harvest user/credential
information [22]. Big tech companies such as Facebook, Slack,
IBM, HPE, Dell, Oracle, Mozilla, Shopify, and Reddit used
the plugin. Users reported downloading trojans to their local
environments after updating the compromised release. The
package owner was notified by the community and remediated
the problem in a couple of hours, and pushed updated releases
soon after that removed the malicious components.

We put the package through our controls using the package’s
community metrics as they are today. For the static code
analysis, we checked out the project’s repository and went
back in time to a commit that occurred closest to but before
the breach happened which was a commit from October 6,
2021 [23].

1) Control Execution:

We executed the 6 controls using the UAParser.js project.
Below are our findings.

C1. UAParser.js does not utilize third-party dependencies,
so this task was simple and limits the attack surface of the
package.

C2. We leveraged eslint, semgrep, and nodejs-scan tools to
perform static code analysis. As figure 2 shows, we identified
14 critical and 18 medium vulnerabilities. Although all these
findings may not be actionable by a malicious actor, it gives
the organization insight into potential attack vectors to which
the package opens the organization up. At this point, the
organization can accept the risk or triage and confirm the
findings.

SCORE NAME REASON
10/ 10 Dependencies 0 dependencies found
0/ 10 | Static Code Analysis 14 critical and

18 medium
vulnerabilities identified

Fig. 2: UAParser.js - C1 and C2 Metrics

C3. We utilized metrics and scoring from the scorecards.
As figure 3 shows, this package has maintenance support
from 10 different companies. This provides confidence that
the package is maintained because it is in the best interests
of the companies maintaining it. However, the package does
not appear to be well maintained. In the last 90 days, there
have only been 2 commits. We also did not detect any activity
in project issues by collaborators, members, or owners of the
project in the last 90 days, but 3 new issues opened in that
time.

SCORE NAME REASON
10 /10 | Contributors | 10 different companies found
1/10 Maintained 2 commit(s) and

0 issue activity found by
maintainers in the last 90 days

Fig. 3: UAParser.js - C3 Metrics

C4. We utilized the branch protection and dangerous work-
flow metrics from the scorecards in this control. Unfortunately,
the scorecards do not provide a way to check for signed
commits or packages outside of GitHub. This project publishes
packages to NPM. Our findings for C4 are in figure 4. We
identified that the project does not include branch protection
on the main or release branches. We also identified that the
package does not require maintainers to use signed commits,
and the packages are not signed.

CS5. Building the package did not take much effort. We
had already forked the repository from GitHub into GitLab
for our analysis. The package does not depend on outside
dependencies, so a simple ‘node install* was sufficient. We
can ingest new changes from the upstream project and validate

SCORE NAME REASON
0/10 Branch-Protection protection not enabled
10 / 10 | Dangerous-Workflow | no dangerous workflows
3/10 Signed-Commits used in some cases
0/10 Signed-Packages false
Fig. 4: UAParser.js - C4 Metrics
Build Test Publish
() build o (¥) eslint-sast o () publish [s]
@ nodejs-scan-sast -
@ semgrep-sast =

Fig. 5: UAParser.js - C5 pipeline

them using a code review before ingesting and publishing the
new package. Figure 5 shows our CI pipeline for implementing
this and previous controls’ build, test and publish phases.

C6. This control would have identified the package attempt-
ing to contact an unknown URL to download the coinminer.

2) Evaluation:
The controls identified many potential problems with the
package beginning on day 0, culminating with unexpected
behavior identified on day 2.

day 0. While performing controls 1-4, the we identified
some indicators that would make it hard to defend the project
against weak links. First, there were already critical vulnera-
bilities in the code base that malicious actors could exploit.
The project no longer seemed to be maintained despite many
different corporate contributors. The project’s community did
not protect the main or release branches from maintainers
directly committing to those branches and did not enforce
signed commits or signed packages. These controls alone may
have identified enough risk for an organization to choose not
to use the package.

day 1. Executing C5 and bringing the package under
internal control was simple because the package resided in one
repository and did not have external dependencies. As a result,
we were able to build the project and publish the resulting
artifact. If an organization had chosen to use this project
before October 23, 2021, this control would have required
the organization to conduct a code review before ingesting
the malicious code. This code review may have identified the
malicious code.

day 2. The observability that C6 provides would have
provided another chance for the organization to identify the
malicious behavior of the package and take actions to protect
itself had the code review in C5 missed it. The malicious code
went outside of the network to download malicious tooling.
C6 would have identified the request, flagged it, and created
a notification in the architecture.

Overall the methods identified many risks within the UA-
Parser.js package. Ultimately, it is up to the organization

to accept the risk. However, our controls would still have
provided protection even with an organization accepting the
risk of using the UAParser.js before October 23, 2021.

B. Case Study: rest-client Gem

REST Client is a ”simple HTTP and REST client for Ruby,
inspired by the Sinatra’s microframework style of specifying
actions: get, put, post, delete” [24]. The package was modified
on August 14, 2019, to include a malicious backdoor. The
malicious actor had a script that would download code from
Pastebin.com that was reportedly used to mine cryptocurrency.
On August 19, a CVE was generated, RubyGems removed the
affected Gems, and the community pulled the malicious code
[25]. As with the last case study, we checked out the project’s
repository and went back in time to a commit that occurred
closest to but before the breach happened, which was a commit
from March 28, 2019 [26].

1) Execution:

We executed the 6 controls using the rest-client project. Below
are our findings.

C1. Like the UAParser.js, this project does not utilize third-
party dependencies, so this task was simple and limits the
attack surface of the package.

c2. We leveraged the brakeman tool to perform static code
analysis. Unsurprisingly, we did not find any vulnerabilities
in the source code as figure 6 shows. The project is mature,
and the functionality does not change often.

SCORE NAME REASON

10/ 10 Dependencies 0 dependencies found

10 /10 | Static Code Analysis 0 vulnerabilities
identified

Fig. 6: rest-client - C1 and C2 Metrics

C3. We utilized metrics and scoring from the scorecards. As
figure 7 shows, this package has maintenance support from 26
different companies. There have not been any commits in the
last 90 days, and we did not detect any activity in project
issues by collaborators, members, or owners of the project in
the last 90, and there have not been any issues opened in the
last 90 days.

SCORE NAME REASON
10 /10 | Contributors | 26 different companies found
0/10 Maintained 0 commit(s) and

0 issue activity found by
maintainers in the last 90 days

Fig. 7: rest-client - C3 Metrics

C4. We utilized the branch protection and dangerous work-
flow metrics from the scorecards in this control. Our findings
for C4 are in figure 8. We identified that the project does not
include branch protection on the main or release branches. We

SCORE NAME REASON

0/10 Branch-Protection protection not enabled
10 / 10 | Dangerous-Workflow | no dangerous workflows
3/10 Signed-Commits used in some cases
0/10 Signed-Packages false

Fig. 8: rest-client - C4 Metrics

also identified that the package does not require maintainers
to use signed commits, and the packages are not signed.

CS. Just like the previous case study, we had already forked
the repository from GitHub into GitLab for our analysis. As
new updates are released, we can conduct a code review and
merge the change.

C6. This control would have identified the package attempt-
ing to contact an unknown URL at Pastebin.com to download
the malicious script.

2) Evaluation:

Our methods identified on day O one weak link. Day 1 and 2
controls provided the most protection in this case study.

day 0. While performing controls 1-4, we identified that the
package had not been maintained or modified in over 90 days.
This is a weak link, but due to the nature of the component
and that REST calls do not often change, the perceived risk
could be less.

day 1. Executing C5 and bringing the package under
internal control saved the organization. The organization could
conduct a code review of the malicious code before incor-
porating the changes. If the organization had overlooked the
malicious code, merged, and moved to day 2 operations, the
additional controls would have caught it.

day 2. C6 would have identified the call to Pastebin.com
and blocked the outgoing request.

Overall the day 1 and day 2 controls would have provided
the most protection in this use case.

V. DISCUSSION

According to GitHub, the most popular programming lan-
guages today are JavaScript, Python, Java, and Ruby. These
languages make it easier to re-use code through package
managers [27]. In 2005, David Heinemeier Hansson gave a
demo via screencast in which he showed developers how to
make a blog in 15 minutes using Ruby on Rails [28]. The
demo was impressive, and it got developers excited about
using Ruby on Rails. However, the demo relied on a few
dependencies and one package manager. Fast forward 15 years
and today, a simple “hello-world” Ruby on Rails application
require 966 packages across three separate package managers:
Ruby Gems (the default package manager for Ruby), NPM
(the default package manager for JavaScript), and Yarn (an
additional JavaScript package manager) [29]. Another example
of dependency growth is with one of the leading JavaScript
frameworks for front-end development, React. Facebook de-
veloped and maintained React, which pulls in 1,213 packages.
This number does not include the number of dependent

packages the dependencies depend on [30]. These packages
allow software engineers to start developing faster, enabling
the software to be shipped faster, bringing value more quickly
to the customer, but at what cost?

1,000+ software packages are a lot of packages to vet before
using open source frameworks. Our life-cycle controls excel at
vetting single components. Still, it would probably not be the
best for an entire framework because of the cost associated
with recursively checking all of the dependencies and those
dependencies, dependencies. As we noticed in the case studies,
the controls on day 1 and day 2 provided the most protection,
and these are also the most costly controls.

Organizations have for a long time struggled with the build-
or-buy decision [31]. Build the software the organization needs
or buy the software from a third-party vendor. That thought
process needs to be applied to open source components now
because the components might be free, but they are free as in
puppy [32]. So it is no longer just a question of the cost to
maintain the component. It is also the cost of a breach because
of the component. It used to be a patch on Friday to prevent
a breach on Monday. It was patched on Friday and breached
on Monday because of the prevalence of supply chain attacks
on open source components.

The perimeter defense from C6 might act as a catch-all in
our table-top exercises and provide protection if an organiza-
tion cannot spend time checking all of the dependencies. Our
controls make a couple of assumptions, with the most sig-
nificant assumption that the controls are correctly configured,
especially for C6. Unfortunately, security misconfigurations
happen [33] which makes defense-in-depth so important.

V1. THREATS TO VALIDITY

Due to the vastness of open source components, we cannot
monitor all packages for vulnerabilities or compromise. We
used two of the most recent and highly publicized breaches
for our use cases. We did not have scores from the Scorecards
for C3 or C4 metrics that come from a snapshot of the
communities at a given time. We used those metrics as they
are today. We do not believe this has jeopardized our results
because we are looking at the community as it is today, having
gone through a breach. The community is probably more
prepared and has more substantial community scores today
than it did leading up to the breach.

We relied on third-party analysis of the breaches in our
evaluations. We used the analysis from reputable sources such
as GitHub, MITRE, and security vendors. We do not believe
our analysis would have been any better than the analysis we
found during our research.

VII. FUTURE WORK AND CONCLUSION

In the future, we would like to scale the controls so that they
can better evaluate components and frameworks with many
dependencies. We would also like to implement the controls
in an organizational setting with other developers to see how
it fits in to their workflows and to gauge the efficiency.

In this work, we present a method to manage the life-
cycle of open source components that leverages six controls
capable of protecting organizations that incorporate open-
source components. Our controls are repeatable and capable
of identifying risk during day 0, day 1, and day 2 of the open-
source component’s operational life. In identifying these six
controls, we can help organizations avoid risky components
and mitigate the fallout from malicious supply chain attacks
as we demonstrated in our case studies.

REFERENCES
[11 S. J. Vaughan-Nichols, “Github: All open-source develop-
ers anywhere are welcome,” Oct 2019. [Online]. Avail-

able: https://www.zdnet.com/article/github-all-open-source-developers-
anywhere-are-welcome/

[2] Franklin, “How hackers infiltrate open source projects.” [On-
line]. Available: https://www.darkreading.com/application-security/how-
hackers-infiltrate-open-source-projects-/d/d-id/1335072

[3] N. e. a. Zahan, “What are weak links in the npm supply chain?”
arXiv:2112.10165 [cs], Feb 2022, arXiv: 2112.10165. [Online].
Available: http://arxiv.org/abs/2112.10165

[4] M. Souppaya, K. Scarfone, and D. Dodson, “Draft nist
special publication 800-218 - secure software development 2 3
framework (ssdf) version 1.1: Recommendations for mitigating the
risk of software 5 vulnerabilities,” Sep 2021. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
218-draft.pdf

[5] Mircosoft, “Github advisory
https://github.com/advisories

[6] Sonatype, “State of the 2020 software supply chain - the 6th
annual report on global open source software development.” [Online].
Available: https://tinyurl.com/4dxtxj3z

[71 K. Lewandowski, “Security scorecards for open source projects,” Nov
2020. [Online]. Available: https://openssf.org/blog/2020/11/06/security-
scorecards-for-open-source-projects/

[8] “Malicious code found in npm package event-stream downloaded 8
million times in the past 2.5 months,” Jul 2020. [Online]. Available:
https://snyk.io/blog/malicious-code-found-in-npm-package-event-stream

[9] MITRE, “cve-website.” [Online]. Available:
https://www.cve.org/ProgramOrganization/CNAsCNAProgramGrowth

[10] M. Hanley, “Github’s commitment to npm ecosystem security,”
Nov 2021. [Online]. Available: https://github.blog/2021-11-15-githubs-
commitment-to-npm-ecosystem-security/

database.” [Online]. Available:

[11] C. Cimpanu, “Hacking 20 high-profile = dev accounts
could compromise half of the npm ecosystem.” [Online].
Available: https://www.zdnet.com/article/hacking-20-high-profile-dev-

accounts-could-compromise-half-of-the-npm-ecosystem/

[12] MITRE, “About the «cve program.” [Online]. Available:
https://www.cve.org/About/Overview

[13] , “Cwe - about - cwe overview.” [Online]. Available:
https://cwe.mitre.org/about/index.html

[14] S. a. Rose, Zero Trust Architecture, Aug 2020, no.
NIST Special Publication (SP) 800-207. [Online]. Available:

https://csrc.nist.gov/publications/detail/sp/800-207/final

[15] C. C. Editor, “defense-in-depth - glossary — csrc.” [Online]. Available:
https://csrc.nist.gov/glossary/term/defense_in_depth

[16] Nov 2021. [Online]. Available: https://codilime.com/blog/day-0-day-1-
day-2-the-software-lifecycle-in-the-cloud-age/

[17] plmirry, “vendorize,” Jun 2019.
https://www.npmjs.com/package/vendorize

[18] A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the
unknown unknowns,” in 2013 21st IEEE International Requirements
Engineering Conference (RE), Jul 2013, p. 92-104.

[19] MITRE, “Secure code review,”’ Aug 2013. [Online].
Available: https://www.mitre.org/publications/systems-engineering-
guide/enterprise-engineering/systems-engineering-for-mission-
assurance/secure-code-review

[20] RubyGems, “Build software better, to-
gether,” May 2022. [Online]. Available:
https://github.com/rubygems/rubygems.org/security/advisories/GHS A-
hcev-rwq6-vh79

[Online]. Available:

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]
[30]

[31]

[32]

[33]

F. Salamn, “ua-parser-js.” [Online]. Available:
https://www.npmjs.com/package/ua-parser-js

C. Cimpanu, “Malware found in npm package with
millions of weekly downloads,” Oct 2021. [Online].
Available: https://therecord.media/malware-found-in-npm-package-with-
millions-of-weekly-downloads/

F. Salman, “Merge pull request 528 from
jparismorgan/oculus . faisalman/ua-parser-js @ 8fe448f,” Oct

2021. [Online]. Available: https://github.com/faisalman/ua-parser-
js/commit/8fe448fddfe1b63cb0611b9ec79e69cabSc4442e

Rest-Client, “Rest-client/rest-client: Simple http and rest client for ruby,
inspired by microframework syntax for specifying actions.” Jun 2019.
[Online]. Available: https://github.com/rest-client/rest-client

J. Koljonen, “[cve-2019-15224] version 1.6.13 published with malicious
backdoor. - issue 713 - rest-client/rest-client,” Aug 2019. [Online].
Available: https://github.com/rest-client/rest-client/issues/713

A. Brody, “Update rubocop config for rubo-
cop 0.54. . rest-client/rest-client@d177784,” Mar
2018. [Online]. Available: https://github.com/rest-client/rest-
client/commit/d1777841a9b16a5099d848d0d2ed62ef0470c0cO

GitHub. [Online]. Available: https://octoverse.github.com/

D. Heinemeier Hansson, “Ruby on rails demo.” [Online]. Available:
https://www.youtube.com/watch?v=Gzj723LkRJY

T. Hastings, “tghastings/freshror.” [Online]. Available:
https://github.com/tghastings/freshRoR

E— “tghastings/freshreactapp.” [Online]. Available:

https://github.com/tghastings/freshReactApp

V. Cortellessa, F. Marinelli and P. Potena, “An opti-
mization framework for “build-or-buy” decisions in software
architecture,” Computers Operations Research, vol. 35,
no. 10, p. 3090-3106, Oct 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054807000238
B. Cotton, “Free as in puppy: The hidden costs of free
software opensource.com,” Feb 2017. [Online]. Available:
https://opensource.com/article/17/2/hidden-costs-free-software

“Security misconfigurations and how to prevent them,” vol. 2021.

