NaPP: Notification and Push Performance in
Wearable Devices

Taniza Sultana and Kristen R. Walcott

University of Colorado Colorado Springs
tsultana@uccs.edu kwalcott@uccs.edu

Abstract. The Internet of Things (IoT) and other related systems have
dramatically changed how we interact with the world. Our devices pro-
vide us with “immediate” information to our connected smart wearable
devices, smartphones, and other tools. We rely on receiving notifications
regardless of the proximity of the device. Notification response is espe-
cially important for medical alerts and urgent calls. Notification delays
occur for many reasons ranging from networks, hardware, or the applica-
tions themselves. Given the importance of on-time notifications, a better
understanding of notification delays is needed.

In this work, we study notification delays in Android mobile/wearable
devices and examine trends in notification delays across devices. We ana-
lyze thirty-two devices based on notification pushes, and we observe that
there are delays between the smartphone generating notification pushes
and the connected wearable device receiving said notification. The delay
is especially observed from notification push performance on older de-
vices. We then identify several vectors of hardware and network aspects
that cause delays.

Keywords: Wearable devices, smartwatch, smartphone notifications, delay tol-
erant network, push notifications, flash memory

1 Introduction

The popularity of wearable devices has grown significantly over the past few
years. It is estimated that the wearables global market will reach $32.9 billion
by 2020 [2]. These include devices such as smart watches and others. Network
connectivity is vital for these devices since most of the wearable devices are
considered low resource devices due to their physical and memory size [19].

One function that is particularly important in the use of these devices is reli-
able comminication and notification. This includes the receiving and displaying
of text and call notifications from connected smartphones on the wearable or
other connected devices. These appear as “smartphone notifications” or “push
notifications” [9].

Wearable devices and others have notifications/alert functions. These hardware
notifications allow the device to receive incoming text/call alerts from their con-

2 Taniza Sultana and Kristen R. Walcott

nected smartphone while the device is not in close proximity but within the
maximum Bluetooth (BT) range of the connected wearable device. Given that
these devices have their limitations within the BT connectivity range and that
physical proximity plays a role in whether it will receive smartphone notifica-
tions or not, a user would hope that the delay of receipt of a notification would
be small.

Unfortunately, the performance of a notification push can be critical. If notifica-
tions are arriving at different times on different devices, it can be problematic.
Delays in receiving a notification may defeat the purpose of the notifications
alert function in wearable devices. Users prefer this function so that they can
continue receiving messages and call alerts while not in close proximity to their
smartphone. Call alerts often are more critical compared to other messaging
alerts, especially if it is a time sensitive call (i.e. an emergency call requiring
immediate attention). Receiving delayed call alerts while away from the smart-
phone will affect users in that they are then delayed from reaching their phone
to answer or respond.

Wearable devices are also critical for health monitoring and tracking. These
devices use sensor technology and notifications to assist in moitoring [22]. For
example, medical alert notifications of an abnormal condition or pre-set alert
trigger allow a medical device to send alerts to its user or data receiver. From
someone such as a healthcare provider may review the data to detect an abnor-
mality [I3]. Wearable technology such as HealthPatch MD and Xio XT can even
generate alerts for healthcare providers. If there is a delay in notifications/alert
process in wearable devices, medical alert notifications are likely to be affected
as well [I4].

Given the many devices that are used over many networks in different environ-
ments, it is important for the users to be well informed if their devices have
potential notification delays in certain conditions or configurations. This can in-
clude device types, models, networks and environments. It is essential to identify
all factors that can affect a smartphone’s push notifications that can increase
latency in notification alerts to associated wearable devices.

To observe and evaluate the notification push performance (NPP) between smart-
phones and connected wearable devices, we test thirty two Android phones and
their connected smartwatches. Push performance are measured through four dif-
ferent configurations where the call notification push, call and text notification
push, push during wifi vs network connection, and push after completing updates
on phone were observed. From this, we identify several vectors that affect the
push notification performance such as excessive stored data, older model device,
and phone carrier service.

The main contributions of this paper are as follows:

— Description of an experiment on NaPP across 32 devices and 4 configurations

(Section

NaPP: Notification and Push Performance in Wearable Devices 3

— Analysis of NaPP data (Section

— Discussion of a vector of mobile properties affecting NaPP (Section

2 Notification Processes and Paired Wearable Communi-
cation Methods

The smartphone push notification process starts with the device trying to gain
user’s attention through their paired wearable device and its preferred settings
(i.e. vibrations, sounds or visual) [20]. With a real-time push notifications the
smartphone system continuously monitors streams to alert the users. Real-time
push notifications usually alert the users immediately after a notification is gen-
erated in their mobile device [16]. However for their connected wearable devices,
the push notifications are often not performed at the same speed even if the
devices follow the same communication protocols. For example, a push notifi-
cation may take several seconds before waking up the connected wearable to
perform the push notification. Often this is due to the device’s embedded delay-
tolerant network (DTN) system. Bluetooth communication also has an impact
on notification timing on many wearable devices.

2.1 Paired Wearable Communication

One-way and two-way communications can occur between smartphones and their
paired devices. In a one-way communication, as shown in Figure when a
smartphone receives an alert such as call or text, it alerts user app on phone
side for its paired devices to wake up the notification manager. The notification
manager posts the notification to a the other devices service (for example, an
Android wear service) to validate settings and preferences. Upon approval, it
then pushes the notification to the associated device service. Once the receiving
service gets the post, an alert is shown on the device, and the smartphone’s
notification push for one-way communication process is complete [9].

Two-way communication is performed when a device is linked with a correspond-
ing manufacturers device application on the paired smartphone. This allows the
two devices to be able to communicate and exchange data. As shown as an ex-
ample in Figure [2| for the mobile device to push a notification to the wearable,
it first recieves an alert, then it wakes up the wearable device and pushes the
notification. The wearable device will then validate and compare to the user set-
tings (Do Not Disturb, nighttime mode, etc) and it will provide the notification.
In turn, the wearable device and push data to the paired mobile device appli-
cation. when the watch-side user app takes action and communicates back to
the Android device through the ”wear service”. In this case, the watch-side app
service will determine the push response and any return actions back to phone
app service [9].

4 Taniza Sultana and Kristen R. Walcott

Android Side Push Watch Side Push

|
|
i Watch
|

Android :
wear . service
service i
I
: Post
I
Notification i
Manager 0 i
I
- |
I
User |
App |
I

Fig.1: One-way communication between smartphone and wear-
able/smartwatch (adapted from [9])

Android Side Push | Watch Side Push
|
Android wear APls zm,
—
«]
|
Phone-side i Watch-side
User App : User App

Fig.2: Two-way communication between smartphone and wear-
able/smartwatch (adapted from [9])

2.2 Bluetooth Communication

To save energy and battery power, many IoT and wearable devices rely on “low-
power wireless communication” such as Bluetooth Low Energy (BLE). Almost
all smartwatches use BLE communication [23]. BLE communication links one
wearable device to only one smartphone which causes the smartwatch to lose its
ability to receive notifications while the linked smartphone is either turned off
or outside of its connectivity range [23].

Wearable connected devices mostly communicate via BT, BLE or built-in Wi-
fi [9] [10]. In some cases, the Bluetooth range (BT-range) is intentionally kept
short to save energy. As a result, many devices frequently handover between BT
and Wi-fi repetitively. With Android devices, the handover can take long time
to finish, causing a delay in their push notifications [10]. When both devices are
connected to Wi-fi, they gnerally communicate through their designated servers
(i.e. Google’s servers).

NaPP: Notification and Push Performance in Wearable Devices 5

3 Experimental Approach and Evaluation

Embedded system testing with connected mobile devices is a complex process,
and test results may vary between configurations. We conducted a comparison
study by manually testing thirty two sets of devices (various smartwatches and
connected Android phones) in four different configurations. We collected and
analyzed the data while leveraging comparative studies, which assisted in deter-
mining the following research objectives:

— Examined what, if any, correlation exists between a smartwatch call notifica-
tion delay and the physical proximity between the smartwatch and connected
smartphone.

— Analyzed the various delays between the different types of smartwatches and
the various types of connected smartphones.

— Analyzed the delay between a smartphone’s Wi-fi connection and phone
carrier service.

— Determined if there is a significant difference between devices with the least-
delay and devices with the most-delay in notification alerts.

Through manual testing, calls were made to the smart phones to record call
notification times. The delay is then measured in seconds. We recorded the time
between the moment a call displayed on the phone to the moment call notification
displayed on the smartwatch. Each set was tested multiple times with the phone
and smartwatch at different distances and different configurations. In addition,
during the study, each phone’s available memory and service carrier’s information
were collected.

4 NaPP Data Evaluation and Analysis

Based on our results from four configurations described below, we compare de-
vices, analyze data from all low performing devices and evaluate factors that
contribute to push notification delays.

4.1 Device Comparison

The two sets of devices from our initial observations were compared side by side
to determine separating factors between them. In our initial observation, the first
device (C1) performed poorly compared to the second device (C2). We evaluated
both sets of devices and swapped their connected smartwatches to see if their
performance changed based on their connected device. There were no notable
changes in the performance during the swap. Aside from their design space and
network, we also evaluated each of the devices settings, available memory space,
and application updates as seen in Table

Although the Android phones under test are the same model and on the same
cellular network, device state differed. Two factors that stand out, as seen in

6 Taniza Sultana and Kristen R. Walcott

Evaluation Matrix|Samsung Samsung
Galaxy S7|Galaxy S7
(C1) (C2)

Wi-fi Network v'Same V' Same

Bluetooth Settings |v'Same v'Same

Carrier Service Sprint Sprint

Test Location v'Same V' Same

Watch App Settings |v'Same v'Same

Device Memory 32GB 32GB

Stored Data Volume |31.2GB 30GB

Free Memory 856 MB 2GB

Android Service Set-|Do Not Dis-|None

ting turb

Application Updates [None None

Table 1: Android Devices Evaluation & Comparison

Configuration|Description

1 Call Notifications On/Off

2 Call and Text Notifications On/Off
3 Change of Carrier Services

4 Outstanding Application Updates

Table 2: Experiment Configurations

Table (I, are the devices’ available memory space and Android service settings.
The low performing device (C1) had significantly less memory space available
compared to the higher performing device (C2). Device C1 also was set to “do
not disturb” mode whereas C2 was not. To confirm if these identified factors
might be contributing factors in the push notifications delay, we first removed
the “do not disturb” setting to allow all calls to come through. We then cleared
memory space to increase available memory space for the device (C1). Once both
changes were made to the C1 device, we performed the test again under the same
four configurations. Given these changes, performance improved by 75% on the
C1 device. In analyzing other devices, low memory space(200MB) consistently
resulted in slower notification pushes. In the case of a “do not disturb” setting
being on, a push will be never performed.

4.2 Notification Push Performance (NaPP) Data Analysis

Following initial device comparison, we next test all devices in four different con-
figurations. In the first configuration, only call notification is on. In the second
configuration, both call and text notifications are enabled. Configuration 3 mod-
ifies the carrier service, and Configuration 4 examines outstanding application
updates, as shown in Table

NaPP: Notification and Push Performance in Wearable Devices 7

B v
o c1

25

S Sy

-] al

©

520 +

S

A cl

£ . .

] .o . -

5

£15

2

2

® ‘.

=

10 | Delay

5}

Z

= -

@ .

=3

& . ”

5 o e teede . -
wre o
---- - - P .
rgrpssves vrwwiv B i Svwatns
0 oeasalWV an ot SRIABARIT TN wae Tt
Conf 1 Conf 2 Conf 3 Conf4
[0 Feet [5 Feet 10 Feet 15 Feet

Fig. 3: Configurations and Data Analysis

A comparison of the push notification times of the 32 devices across the 4 config-
urations can be seen in Figure |3l As in the initial device comparison, all devices
are the same model and on the same cellular network. We additionally exam-
ine the impact of moving the devices away from the source of notification to
determine the impact of Bluetooth range.

In Figure[3] each configuration’s data is displayed in individual case study blocks,
where y values are the push response time in seconds. Distance between testing
devices are color-coded in four categories. A “delay” is defined as a notifica-
tion that has not been received within 10 seconds. Push notifications that occur
within 5 to 10 seconds are considered as “no notable delay.” The worst perform-
ing device C1, described in Table [1} is displayed in connected lines where a red
dot indicates that the device was unable to perform the notification push.

The data from Configuration 1 (only call notification on) and Configuration 2
(call and text notifications on) were compared to determine if reducing push
service volume from multiple applications can improve Android wear service
push notifications performance. There were no differences observed in notifica-
tion push performance if one application or multiple applications were enabled
for Android wear service to perform the push. The Android wear service pro-
cesses the call notification as soon an alert is available on phone-side apps and
immediately moves it to push determination. It then waits for the next available
alert without causing any delay.

We also analyzed the data from Configuration 3 to identify if placing the device
under a different phone carrier service has any effect on push notifications. We
observed performance dropped (i.e. the notification push time increased) in eight
sets of devices compared to their data collected during Configuration 1 and

8 Taniza Sultana and Kristen R. Walcott

Configuration 2 observations. Those sets of devices performance returned to their
baseline when tested again under their Wi-fi connection. This data indicated that
push notification can be affected when phones are performing under a carrier
network where low network connectivity can delay the overall push notifications.

In many cases, smartphone users may pause an update for later and forget
to return to complete the upgrade. Configuration 4 was designed to capture
any unnoticed or hidden application updates in the phones. In our study, we
identified two devices that had pending application (image gallery and Venom)
updates, which caused notification delays. Once the applications were updated
on both devices and tested again, we noted that the notification performance on
the devices improved immediately.

4.3 Research Objectives Review

Based on the evaluation and the collected data analysis, we were able to make
determinations on the four research objectives we listed earlier in Section [3}
There is no correlation between smartwatch call notification delay
and the physical proximity between the smartwatch and connected
smartphone.

Based on all four configurations and analysis, there was no difference noted in the
call notification push at four distances ranging from zero to fifteen feet between
the smartphones and their associated smartwatches. Therefore, we determined
that physical proximity does not play any role in call notification push unless the
devices are outside of their BT-range. In that case, the connected smartwatch
will not receive any notification at all and rather dropped the push notification
if outside of a certain BT-range.

Call notification push does not vary between smartwatch types, but
it may vary between smartphone types.

In our work, some devices performed poorly in notification push. For those sets
of devices, we looked at both the phone and smartwatch separately to determine
if the delay notification behavior is in the phone or in the smartwatch. Those
specific smartwatches did not display the same behavior when they were con-
nected with another model smartphone. The delay behavior in call notification
push was mostly observed in older models (Samsung Galaxy S6 and Samsung
Galaxy S7).

There is a slight difference in call notifications push between Wi-fi
connection versus phone carrier service.

In most pairs of devices, there was no notable difference in call notification push
between testing under Wi-fi connection and testing under phone carrier service;
24% of the devices between two carrier services displayed latency in their call
notification pushes compared to using a Wi-fi connection.

NaPP: Notification and Push Performance in Wearable Devices 9

There is no significant difference in hardware design, software and
architecture, between low performing and high performing devices
other than their memory space, and processing power.

Even though there is not a significant difference in the architecture or software of
low performing and high performing devices, the memory space did play a role in
the speed of push notification processing. Based on the data collected, all newer
smartphones have greater memory available compared to older versions of the
phones. Push delay was negligible between Samsung Galaxy 9 and 10 models.
These models also have installed memory space between 64MB to 128MB and
expanded memory up-to 512MB.

In summary, we observed the notification push performance of newer Android
phones is faster than older Android devices and within an acceptable range in
our work. We also examined the performance of older devices which are still
in use by people around the world for various reasons, especially among the
older population. We found the older devices had notable delays with push no-
tifications which could potentially be an issue for wearable and health device
manufacturers as many health devices rely on the same concepts for their health
alert notifications.

5 Delay Vector Classification

Based on the evaluation data, we conclude that there is no notable correlation
between smartwatch call notification push and the physical proximity between
the smartwatch and connected smartphone. We also determine that call notifi-
cation pushes may vary between smartphone types (i.e. older version vs newer
phones). We note from our observation that there is a small difference in call
notification pushes between Wi-fi connection compared to phone carrier services.
In the study, all newer smartphones have greater memory available compared
to the older versions of the phone. Push delay is almost non-existent in Sam-
sung Galaxy 9 and 10 models. These models also have installed memory space
between 64MB and 128MB with expanded memory up to 512MB.

To create a delay vector, we identified factors with higher probability to disrupt
the smartphone’s push notifications as listed below:

5.1 Delay Tolerant Network

The routing protocols in Delay Tolerant Networks (DTN) adapt themselves even
when they are not continuously connected to their paired device. When in an
environment when the device is not connected to Wi-fi, the routing protocol
propagates multiple copies of data packets to increase the probability of the
delivery [I]. Our study reveals that DTN does not affect push notifications
when the devices are on the same Wi-fi network. However, when using a carrier
service, DTN processes data in using a multiple packets delivery method and

10 Taniza Sultana and Kristen R. Walcott

Type Conf 1 |Conf2 |Conf3 |[Conf 4
Galaxy S6 (6.2 6.05 15 5.5
Galaxy S7(2.56 3 8.69 2.19
Galaxy S8|2.25 3 2 2.25
Galaxy S9 |1 0 1 0
Galaxy 0 0 0 0
S10
Table 3: Average Push Notification Time by Phone Type

blindly forward copies of packets to any available nodes without a selection
criteria [IJ.

Packets for an Android wear service may not deliver directly but rather push the
packet to whichever service it comes in contact with first. As a result, some pack-
ets may not reach the Android wear service immediately for push determination
(to push or not to push) and ultimately can cause a delay in push notifications.
In our work, eight of the thirty-two devices displayed delayed behavior in their
push notifications when they were removed from the Wi-fi connection and tested
under a carrier service.

5.2 Older Version of Phone

Although older phones did not have significant latency in their notification
pushes, their performance was slower than newer devices. While newer devices
pushed notifications performance immediately, the performance of older devices
varied between 5-10 seconds. Also in newer devices, the data storage capability is
significantly larger than in older devices. Lower data storage impacts the speed
of push notifications, causing older devices or other resource constrained devices
to have reduced performance for push notifications, as observed in Section
This may be a danger for resource constrained devices such as health monitors.

Table [3| provides with a top-level view of the data for all tested smartphones.
Based on the analysis, we determine that the push delay is negligible on the newer
version of Android phones. The older model devices have small delay behavior
in their push notifications. Since the delay time was less then 10 seconds, we
considered the behavior as “slower performance” rather than an actual push
notification delay. Other devices though such as the Samsung Galaxy S6 in
Configuration 3 had a recorded notification delay as the notification push took
15 seconds on average to succeed. While this performance reduction could have
occurred due to the carrier service, the age of the device could also be a factor.

5.3 Do Not Disturb Setting

The “do not disturb” setting in the phone provides great benefits to users as
it can be set manually for a specific time or automatic start and ending time
for every day. Even when the do not disturb setting is enabled, it will allow

NaPP: Notification and Push Performance in Wearable Devices 11

bypass calls or messages to the phone if the sender’s contact is saved to the
users’ favorite list. However, when the Android wear service looks for when to
push, if the phone is set to the “do not disturb” setting, it will not push any
notifications to its connected smartwatch regardless of favorite contact selection.
This should be of concern to developers working with safety critical applications.

5.4 Phone Carrier Service

It was expected during our work that the probability of the phone carrier service
having an affect on push notification are very low since the push notifications
communicate via BT connectivity once the Android service determines to push.
Collected data suggested differently. Eight of the thirty-two devices displayed
latency when they were tested under their cellular network.

5.5 Applications Updates

Lastly, device performance can be reduced or interrupted by lack of applica-
tion updates. Even with applications such as an image gallery that may not be
directly related to call or text, the overall performance of the device and noti-
fications may degrade. With extra data communication overhead, updates may
delay the Android wear service decision making process. As a result, it can delay
the push notifications.

6 Threats to Validity

Our study includes push performance data from more than 500 calls in four
different configurations. However, it was limited to Android phones along with
smartwatches due to accessibility of physical devices. We expect that similar
trends will occur with other types of devices as hardware design and architec-
ture had negligible impact on delays. Also, all measurements were performed
manually, which threatens the reliability of the timing measurements. To mit-
igate this risk, each configuration setup on the pairs of devices were run three
times, and the average was reported. Finally, the number of factors considered
in the NPP analysis and Vector Classification are limited due to only having
an outside look of the system at the time of notification. Other factors may
contribute to delays besides those considered here.

An automated testing technique will help us to more accurately measure push
notification performance delays across a larger number of devices and with a
higher level of precision and efficiency in the future. Automation will also support
the analysis of a larger set of factors such as hardware state, network state, and
more at the time of notification.

7 Related Work

Work exists in the study of push notification processes and DTN architectures
for smartphone and wearable devices. Flash memory, which can additionally

12 Taniza Sultana and Kristen R. Walcott

influence performance, has also been studied. Tools have also been developed
to inspect application behavior and device state. However, to our knowledge,
notification push performance has not been analyzed within the environment.

Push notifications are a very important application embedded in smartwatches,
which allow paired smartphones to communicate with its connected wearable
device and send notifications. Liu et al. [9] identifies that 200+ apps utilize
push notifications and exhibit bursty arrival patterns. The push notifications
are mostly dominated by instant messaging and email notifications. They iden-
tify that 84% of the time the smartwatches were paired with their connected
smartphones while the network traffic flows were short, small, and slow. During
that time BT traffic was noted to be 91% of the overall traffic.

Most smartphones are designed to receive push notifications as soon as they are
available to minimize latency. However, Liu et al. [I0] identifies that when a
notification is available, phone-side user apps push to the Android wear service
policy to determine the notifications push. Many Android apps push notifica-
tions to the smartwatch only when other phone-sides apps are not running. When
other apps are running on the phone, the service policy assumes that the user is
interacting with their device and is able to see the notifications, and therefore,
no push is necessary. This service policy is not ideal and can cause unnecessary
latency in the push notifications process or even skip notifications. This is be-
cause, in some cases, a user may leave an app running on their phone but not
be in close proximity to see an incoming call or message.

Extensive use of push notification creates “interruption overload” in mobile de-
vices, and in some cases, it even creates a bottleneck. This interruption occurs
when various types of notification pushes take place. For example, there might
be an OS update, incoming messages from other users, news alerts, user pre-
ferred application alerts, etc.... The notification push is designed to provide
the user with alerts in a timely and “instant manner” once a new message or
alert is generated by or by performing a periodical pulling. However, as more
applications are utilized by users and other services run on the Android devices
in the background, incoming notifications are often interrupted and may arrive
at a delayed interval instead of instantly [15].

Energy savings and increased battery life play a big role in development of new
capability and functionality in connected wearable devices. Because of this, most
notifications pushes are used to communicate with delay-tolerant in wearable
devices [9], [22]. Delay-tolerant addresses the issue of lack of continuous network
connectivity [3]. Benhamida et al. [3] conduct a survey to look into the use of
DTN in IoT applications to overcome connectivity problems. The goal is to
identify current solutions that enable delay tolerant IoT. In the survey, they
identify two main characteristics for DTN that effect IoT scalability: delivery
latency and network coverage. Delivery latency measures the duration between
a message being generated and its delivery. It also captures efficiency of the
routine path [3]. In another publication, Li et al. discuss DTN performance

NaPP: Notification and Push Performance in Wearable Devices 13

relays, and they identify that the routine and forwarding algorithms and their
design compatibility with mobility patterns are key factors in performance [g].
The Mobile Delay Tolerant Network (MDTN) is used to establish communication
when there is a lack of infrastructure. To improve the data accessibility and
efficiency, the users tend to utilize cooperative caching schemes, however, in the
MDTN, contact patterns remain a challenge [I§].

Flash memory is another major component in smart phones that can affect sys-
tem and notification performance [II]. In a research study by Zao et al., they
recognize that the physical characteristics of flash memory and its limited life
cycle tend to degrade smartphone’s performance over time. Thus, they designed
a content-aware trace collection tool with the purpose to examine the data re-
dundancy characteristics in Android phones. During their research study they
collected 15 mobile trace for analysis and determined that 20% to 40% of the
I/O requests on the I/O critical path of the storage stack are redundant and
that this data redundancy is minimally shared among different applications [I1].
Because of this, there is a longer response time for applications and a reduced
storage capacity in Android smartphones. As observed in our study, application
response time and storage capacity have the potential to influence notification
push performance.

Mobile application behavior can be observed through a number of tools. For ex-
ample, hardware performance can be tracked through applications that monitor
the CPU, OS, or system [B], [7], [6]. Software state can also be monitored to a
limited degree, although the majority of testing is performed within an emula-
tor [21]. To support debugging and replay of application actions on the device
under consideration, Sahin et al. [I7] developed a tool called RandR. RandR cap-
tures and replays multiple sources of input during application execution without
need of the application’s source code. While their work focused on capturing
UI interactions, it could be utilized for other application state monitoring and
recording such as when a push notification occurs.

Byrd et. al. [4] took a closer look at these delay behaviors and the Android
hardware process during a notification push from a cloud service or other appli-
cation. They described and developed a framework that focuses on automated
hardware profiling and capture of mobile application states. From this frame-
work, they are able to better understand application behavior at the hardware
level during a notification push. As part of google cloud service, a Firebase server
can log and record various application data including user interaction. When de-
ploying an application, majority of Android devices (models and OS versions)
are found to be challenging since many software implementation relays on the
device specification and OS [12].

8 Conclusion

Many factors can contribute to notification push delays, and as wearable devices
grow in popularity for general and specialized use, delays become an issue. This is

14 Taniza Sultana and Kristen R. Walcott

especially true given that many of these devices are being used to assist in health
monitoring and related alerts. Some of these alerts could be time sensitive and
require immediate attention. Given the similar technologies being used between
smartphones and some medical alert devices, the delaying vectors can affect both
sets of devices.

In our work, we identified that most newer smartphones performed efficiently,
but older devices exhibited delays in their notification pushes. Phone stored data
volume and their carrier service also seemed to play a small role in notifications
push performance and resulting delay. These vectors might not seem signifi-
cant, however, it can easily affect a medical wearable device and prevent the
alert notification push from performing in a timely manner. Our overall research
highlights some of the vectors in the push notification process. More study and
research in this area will provide the developers with “lookout factors” when
developing wearable medical alert devices.

In future work, we will examine a wider range of factors that may contribute
to notification delays across a broader set of devices. We will also automate the
testing process focusing on particular applications.

References

1. Abdelkader, T., Naik, K., Nayak, A., Goel, N.; Srivastava, V.: A performance
comparison of delay-tolerant network routing protocols. IEEE Network 30(2),
46-53 (2016). DOI 10.1109/MNET.2016.7437024

2. Al-Sharrah, M., Salman, A., Ahmad, I.: Watch your smartwatch. In: 2018 Inter-
national Conference on Computing Sciences and Engineering (ICCSE), pp. 1-5.
Kuwait City, Kuwait (2018). DOI 10.1109/ICCSE1.2018.8374228

3. Benhamida, F.Z., Bouabdellah, A., Challal, Y.: Using delay tolerant network for
the Internet of Things: Opportunities and challenges. In: 2017 8th International
Conference on Information and Communication Systems (ICICS), pp. 252-257
(2017). DOI 10.1109/IACS.2017.7921980

4. Byrd, R.W., Sultana, T., Walcott, K.R.: Ahpcap: A framework for automated
hardware profiling and capture of mobile application states. In: 2020 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW),
pp. 183-188. IEEE (2020)

5. Google: Cpu monitor - temperature, usage, performance. https://play.google.
com/store/apps/details?id=com.glgjing.stark&hl=en_US

6. Google: Os monitor - apps on google play. https://play.google.com/store/
apps/details?id=com.eolwral.osmonitor&hl=en_US

7. Google: System monitor - cpu, ram booster, battery saver. https://play.google.
com/store/apps/details?id=com.glgjing.marvel&hl=en_US

8. Li, Y., Hui, P., Jin, D.; Chen, S.: Delay-Tolerant Network Protocol Testing and
Evaluation. IEEE Communications Magazine p. 9 (2015)

9. Liu, X., Chen, T., Qian, F., Guo, Z., Lin, F.X., Wang, X., Chen, K.: Characterizing
Smartwatch Usage in the Wild. In: Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services - MobiSys '17, pp. 385—
398. ACM Press, Niagara Falls, New York, USA (2017). DOI 10.1145/3081333.
3081351. URL http://dl.acm.org/citation.cfm?doid=3081333.3081351

https://play.google.com/store/apps/details?id=com.glgjing.stark&hl=en_US
https://play.google.com/store/apps/details?id=com.glgjing.stark&hl=en_US
https://play.google.com/store/apps/details?id=com.eolwral.osmonitor&hl=en_US
https://play.google.com/store/apps/details?id=com.eolwral.osmonitor&hl=en_US
https://play.google.com/store/apps/details?id=com.glgjing.marvel&hl=en_US
https://play.google.com/store/apps/details?id=com.glgjing.marvel&hl=en_US
http://dl.acm.org/citation.cfm?doid=3081333.3081351

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

NaPP: Notification and Push Performance in Wearable Devices 15

Liu, X., Yao, Y., Qian, F.: Poster: Improve Push Notification on Smartwatches.
In: Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services - MobiSys ’17, pp. 154-154. ACM Press, Niagara Falls,
New York, USA (2017). DOI 10.1145/3081333.3089298. URL http://dl.acm.
org/citation.cfm?doid=3081333.3089298

Mao, B., Zhou, J., Wu, S., Jiang, H., Chen, X., Yang, W.: Improving flash mem-
ory performance and reliability for smartphones with i/o deduplication. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(6),
1017-1027 (2019). DOI 10.1109/TCAD.2018.2834395

Maryam, S., Purwono, A., Syahril: Android application development for push no-
tification feature for indonesian space weather service based on google cloud mes-
saging. Journal of Physics: Conference Series 2214(1), 012,031 (2022). DOI
10.1088/1742-6596,/2214/1/012031. URL https://doi.org/10.1088/1742-6596/
2214/1/012031

Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: Sta-
tistical analysis of the unsw-nb15 data set and the comparison with the kdd99 data
set. Information Security Journal: A Global Perspective 25(1-3), 18-31 (2016)
Muhammad, G., Rahman, S.M.M., Alelaiwi, A., Alamri, A.: Smart health so-
lution integrating iot and cloud: A case study of voice pathology monitoring.
IEEE Communications Magazine 55(1), 69-73 (2017). DOI 10.1109/MCOM.2017.
1600425CM

Okoshi, T., Tsubouchi, K., Tokuda, H.: Real-World Product Deployment of Adap-
tive Push Notification Scheduling on Smartphones. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2792-2800. ACM, Anchorage AK USA (2019). DOI 10.1145/3292500.3330732.
URL https://dl.acm.org/doi/10.1145/3292500.3330732

Roegiest, A., Tan, L., Lin, J.: Online In-Situ Interleaved Evaluation of Real-Time
Push Notification Systems. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval - SIGIR 17,
pp. 415-424. ACM Press, Shinjuku, Tokyo, Japan (2017). DOI 10.1145/3077136.
3080808. URL http://dl.acm.org/citation.cfm?doid=3077136.3080808

Sahin, O., Aliyeva, A., Mathavan, H., Coskun, A.K., Egele, M.: RANDR: Record
and Replay for Android Applications via Targeted Runtime Instrumentation p. 11
(2019)

She, J., Bai, X.: Caching strategy in Mobile Delay Tolerant Network. In: 2016
7th IEEE International Conference on Software Engineering and Service Science
(ICSESS), pp. 497-500 (2016). DOI 10.1109/ICSESS.2016.7883117

Siboni, S., Shabtai, A., Tippenhauer, N.O., Lee, J., Elovici, Y.: Advanced Security
Testbed Framework for Wearable IoT Devices. ACM Transactions on Internet
Technology 16(4), 1-25 (2016). DOI 10.1145/2981546. URL http://dl.acm.org/
citation.cfm?doid=3023158.2981546

Turner, L.D., Allen, S.M., Whitaker, R.M.: Push or Delay? Decomposing Smart-
phone Notification Response Behaviour. In: A.A. Salah, B.J. Krose, D.J. Cook
(eds.) Human Behavior Understanding, vol. 9277, pp. 69-83. Springer Interna-
tional Publishing, Cham (2015). DOI 10.1007/978-3-319-24195-1_6. URL http:
//1ink.springer.com/10.1007/978-3-319-24195-1_6

Walcott-Justice, K., Mars, J., Soffa, M.L.: Theme: a system for testing by hard-
ware monitoring events. In: Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pp. 12-22 (2012)

http://dl.acm.org/citation.cfm?doid=3081333.3089298
http://dl.acm.org/citation.cfm?doid=3081333.3089298
https://doi.org/10.1088/1742-6596/2214/1/012031
https://doi.org/10.1088/1742-6596/2214/1/012031
https://dl.acm.org/doi/10.1145/3292500.3330732
http://dl.acm.org/citation.cfm?doid=3077136.3080808
http://dl.acm.org/citation.cfm?doid=3023158.2981546
http://dl.acm.org/citation.cfm?doid=3023158.2981546
http://link.springer.com/10.1007/978-3-319-24195-1_6
http://link.springer.com/10.1007/978-3-319-24195-1_6

16

22.

23.

Taniza Sultana and Kristen R. Walcott

Yang, Y., Cao, G.: Characterizing and optimizing background data transfers on
smartwatches. In: 2017 IEEE 25th International Conference on Network Protocols
(ICNP), pp. 1-10. IEEE, Toronto, ON (2017). DOI 10.1109/ICNP.2017.8117536.
URL http://ieeexplore.ieee.org/document/8117536/

Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., Dutta, P.: The
internet of things has a gateway problem. In: Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications, HotMobile ’15, pp.
27-32. ACM, New York, NY, USA (2015). DOI 10.1145/2699343.2699344. URL
http://doi.acm.org/10.1145/2699343.2699344

http://ieeexplore.ieee.org/document/8117536/
http://doi.acm.org/10.1145/2699343.2699344

	NaPP: Notification and Push Performance in Wearable Devices

