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3.1. INTRODUCTION

3.1 Introduction

A generalization to the Fourier transform of a sequence is the z-
transform. In the continuous-time the corresponding generalization
is the Laplace transform. The z-transform has the following advan-
tages over the Fourier transform:

� Converges for a broader class of signals

� Analytically provides a more convenient notation

� Allows the power of complex variable theory to be effectively
utilized

3.2 The Bilateral z-Transform

The z-transform of a sequence is defined as

X.z/ D

1X
nD�1

xŒn�z�n

where z is a complex variable.

� A convenient operator notation which we will adopt is to write

ZfxŒn�g D
1X

nD�1

xŒn�z�n D X.z/

� Note that the z-transform operator transforms the sequence
xŒn� to X.z/, a function of a continuous complex variable z
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� The relationship between a sequence and its transform is de-
noted as

xŒn�
Z
 ! X.z/

� The z-transform we have defined above is actually the two-
sided or bilateral z-transform, which in general is different
from the one-sided or unilateral z-transform, which is defined
as

X .z/ D
1X
nD0

xŒn�z�n

Fourier Transform Connection

� An important comparison between the z-transform and the Fourier
transform can be made by first writing z in polar form

z D r ej!

then

X.rej!/ D

1X
nD�1

xŒn�.rej!/�n

D

1X
nD�1

.xŒn� r�n/e�j!n

� The above representation of ZfxŒn�g can also be viewed as
FfxŒn�r�ng, where the special case r D 1 gives the Fourier
transform of xŒn�

� ConsideringX.z/ as a function defined over the complex plane
and z D ej! the unit circle in the z-plane, we see that the
Fourier transform is just the z-transform evaluated on the unit
circle
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3.2. THE BILATERAL Z-TRANSFORM

Re

Im

Unit
Circle

ω

1

z-plane

Complex z-plane showing the unit circle

� Since ! is the angle a vector with point on the unit circle makes
to the real axis, it should be clear thatX.ej!/ does indeed have
period 2� (Note: ! D 0 $ z D 1, ! D �=2 $ z D j ,
! D �� $ z D �1, and ! D ��=2$ z D �j )

3.2.1 Convergence Considerations

We know that the Fourier transform does not converge for all se-
quences, similarly the z-transform does not converge for all sequences
nor does it in general converge over the entire z-plane.

� Define: the values in the z-plane for which the z-transform
converges as the region of convergence or ROC

� If we extend the uniform convergence requirement of the Fourier
transform to the z-transform, we then have that the z-transform
must also be absolutely summable
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� The z-transform is absolutely summable if

1X
nD�1

jxŒn�z�nj D

1X
nD�1

jxŒn�jjzj�n

D

1X
nD�1

jxŒn�r�nj <1

� Note that convergence depends only on jzj, thus if the series
converges for z D z1, the ROC also contains the circle jzj D
jz1j

� In general the region of convergence is a ring or annulus in the
z-plane

Re

Im

1

z-plane

ROC

General ROC

� An important observation is to note that if the unit circle is
contained in the ROC, then the z-transform converges for jzj D
1 and hence the Fourier transform also converges
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3.2. THE BILATERAL Z-TRANSFORM

� From complex variable theory we know that the z-transform is
a Laurent series

– The function corresponding to a Laurent series within the
region of convergence is also analytic

– Hence the z-transform and all of its derivatives are con-
tinuous functions of z within the ROC

– In particular if the ROC includes the unit circle, then the
Fourier transform and all of its derivatives with respect to
! are continuous functions of !. Additionally since the
sequence must be absolutely summable, it also is stable

� It is important to note that certain sequences such as sin.!cn/
=.�n/ and cos!onwere not absolutely summable in the Fourier
transform case, yet under different convergence criteria or by
allowing impulses, the Fourier transforms could be obtained

� For special cases such as this the Fourier transforms are not
continuous and hence do not result from evaluating the z-
transform on the unit circle

� Frequently the z-transforms of interest to us will converge to a
ratio of polynomials in z inside the ROC, i.e. X.z/ D P.z/=Q.z/

� In this case we will see that the poles of X.z/, i.e. values of z
where Q.z/ D 0) will determine the ROC. Note the zeros of
X.z/ are the values of z where P.z/ D 0.
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Example 3.1: A Right-Sided Sequence

Find the z-transform of xŒn� D an uŒn� and the corresponding
ROC

� According to the definition we have

X.z/ D

1X
nD�1

anuŒn�z�n D

1X
nD0

.az�1/n

� Convergence requires that

1X
nD0

jaz�1jn <1 ) ja=zj < 1 or jzj > jaj

thus the ROC = fz W jzj > jajg

� For z inside the ROC we can write

X.z/ D

1X
nD0

.az�1/n D
1

1 � az�1
D

z

z � a
; jzj > jaj

� Suppose a D 1, then xŒn� is the unit step function and we see
that the ROC is jzj > 1

� When the z-transform of a sequence is a rational function it is
instructive to plot the pole-zero locations in the z-plane along
with the region of convergence
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3.2. THE BILATERAL Z-TRANSFORM

Re

Im

z-plane
Unit
Circle

1a

Pole-zero plot and ROC for anuŒn�

� In the above pole-zero plot we have a zero at z D 0 and a pole
at z D a which sets the inner radius of the ROC

Example 3.2: A Left-Sided Sequence

A related signal is the time reversed exponential given by xŒn� D
�anuŒ�n � 1�

� The z-transform is

X.z/ D �

1X
nD�1

anuŒ�n � 1�z�n D �

�1X
nD�1˜
reindex

anz�n

D �

1X
nD1

a�nzn D 1 �

1X
nD0

.a�1z/n

� The series converges provided jz=aj < 1 or jzj < jaj, thus

X.z/ D 1 �
1

1 � a�1z
D

1

1 � az�1
D

z

z � a
; jzj < jaj
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� Note that both exponential sequences have the sameX.z/, how-
ever the ROCs are different

Re

Im

z-plane
Unit
Circle

1a

Pole-zero plot and ROC for �anuŒ�n � 1�

Comment
The two examples given above point out the importance of in-

dicating the ROC when dealing with the z-transform of a sequence.
Clearly the relationship between xŒn� andX.z/ is not unique without
knowledge of the ROC.
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3.2. THE BILATERAL Z-TRANSFORM

Example 3.3: Two Right-Sided Exponential Sequences

Find the z-transform and ROC of the sequence

xŒn� D

�
1

2

�n
uŒn�C

�
�
1

3

�n
uŒn�

� To simplify the computation we note that xŒn� is composed of
two exponential sequences which we know have transform pair

anuŒn�
Z
 !

1

1 � az�1
; jzj > jaj

� Further note that the z-transform operator is linear, i.e.

ax1Œn�C bx2Œn�
Z
 ! aX1.z/C bX2.z/; z 2 ROC

� The ROC must contain values of z such that both series con-
verge, hence ROC D ROC1 \ ROC2 (i.e. the intersection of
the individual ROCs)

� Returning to the example we have

X.z/ D
1

1 � 1
2
z�1
C

1

1C 1
3
z�1
D

2z.z � 1
12
/

.z � 1
2
/.z C 1

3
/

with the ROC requiring that jzj > 1=2 and jzj > 1=3, thus the
ROCD jzj > maxf1=2; 1=3g D 1=2
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Re

Im

z-plane
Unit
Circle

11

2
---

1

12
------

1

3
---–

Pole-zero plot and ROC

Example 3.4: A Left and Right-Sided Exponential Sequence

Rework the previous example with the first exponential time re-
versed, that is let

xŒn� D �

�
1

2

�n
uŒ�n � 1�C

�
�
1

3

�n
uŒn�

� Using the results from the previous examples we know that�
�
1

3

�n
uŒn�

Z
 !

1

1C 1
3
z�1

; jzj >
1

3

and

�

�
1

2

�n
uŒ�n � 1�

Z
 !

1

1 � 1
2
z�1

; jzj <
1

2
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3.2. THE BILATERAL Z-TRANSFORM

� Using linearity we can immediately write that

X.z/ D
2.1 � 1

12
z�1/

.1C 1
3
z�1/.1 � 1

2
z�1/

D
2z.z � 1

12
/

.z C 1
3
/.z � 1

2
/
;
1

3
< jzj <

1

2

� Note that althoughX.z/ has the same functional form as in the
previous example, the ROC is now an annular region

Re

Im

z-plane

1

12
------1

3
---– 1

2
---

Pole-zero plot and ROC

3.2.2 Convergence for Finite Length Sequences

If xŒn� has finite length then X.z/ converges everywhere so long as
each term jxŒn�z�nj is finite.

� For xŒn� nonzero only on N1 � n � N2

X.z/ D xŒN1�z
�N1 C � � � C xŒN2�z

�N2
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� IfX.z/ includes only positive powers of z, then the ROC is the
entire z-plane except for jzj ! 1, (i.e. ROCD jzj <1)

� If X.z/ includes only negative powers of z, then the ROC D
jzj > 0

� If X.z/ contains both positive and negative powers of z, then
the ROCD 0 < jzj <1

Example 3.5: Rectangular Window

An important finite length sequence is the rectangular window of
length N with exponential weighting an,

xŒn� D

�
an; 0 � n � N � 1

0; otherwise

� By definition

X.z/ D

N�1X
nD0

.az�1/n

D
1 � .az�1/N

1 � az�1
D

1

zN�1
zN � aN

z � a

� Since X.z/ includes only negative powers of z, the ROC D
jzj > 0

� From the summed form of X.z/ we see that the pole-zero pat-
tern consists of N � 1 zeros uniformly spaced about zero with
radius a, excluding the zero at z D a, since it is cancelled
by a pole at z D a (Note the N roots of zN � aN D 0 are
zk D ae

j.2�k=N/; k D 0; 1; : : : ; N � 1)
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3.3. PROPERTIES OF THE ROC

� There are also N � 1 poles at zero which is why the origin is
excluded from the ROC

Re

Im

z-plane

radius a

Unit Circle

N - 1 order pole

N - 1 zeros spread
around circle
at angle 2π/N

2π

N
------

Pole-zero plot for N D 16 and a < 1

3.3 Properties of the ROC

The following properties assume that the z-transform is a rational
function and that jxŒn�j is finite except perhaps at n ! 1 or n !
�1.
Property 1: The ROC is an annulus in the z-plane centered at the
origin, i.e. ROC D fz W 0 � rR < jzj < rL � 1g where rR and rL
are the inner and outer radii of the annulus respectively.
Property 2: The Fourier transform of sequence xŒn� converges ab-
solutely if and only if the ROC of X.z/ includes the unit circle.

� Follows from the fact that the z-transform reduces to the Fourier
transform when jzj D 1
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Property 3: The ROC cannot contain any poles.

� This follows from the fact that X.z/ is infinite at a pole and
hence the series does not converge

Property 4: For xŒn� a finite duration sequence the ROC is the entire
z-plane except possibly z D 0 or z !1.

� Follows from the definition of the z-transform

Property 5: If xŒn� is a right-sided sequence, that is xŒn� is zero for
n < N1 < 1, then the ROC is the exterior of a circle with radius
equal to the magnitude of the largest pole of X.z/. Note z ! 1
may be excluded from the ROC depending upon the sign of N1.

� To show that the ROC is the exterior of a circle suppose that
the ROC includes jzj D r0, then we know that xŒn�r�n0 is ab-
solutely summable

� The sequence xŒn�.r0 C �r/�n, �r > 0, is also absolutely
summable since .r0 C �r/�n will decay faster than r�n0 for
positive values of n, and there are only a finite number of neg-
ative n terms since xŒn� is right-sided

� The fact that the circle radius corresponds to the magnitude
of the largest pole is easiest to show if we assume that all the
poles are simple

� If we expand X.z/ using partial fractions, then each term in
the expansion will correspond to a simple pole and have ROC
corresponding to the exterior of a circle with radius equal to
the particular pole magnitude (recall that a single pole results
from an exponential sequence)
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3.3. PROPERTIES OF THE ROC

� The ROC of a sum of single pole terms corresponds to the
intersection of the ROCs, thus since all the ROCs are the exte-
riors of circles, it is the pole with largest magnitude that deter-
mines the ROC

Property 6: If xŒn� is a left-sided sequence, that is xŒn� is zero for
n > N2 > �1, then the ROC is the interior of a circle with radius
equal to the magnitude of the smallest pole of X.z/. Note z D 0

may be excluded from the ROC depending upon the sign of N2.

� The justification of property 6 follows the same logic that was
used in justifying property 5

Property 7: If xŒn� is a two-sided sequence, that is the sequence is
infinite in duration in both directions, then the ROC is an annulus
with inner and outer radius bounds determined by the poles of X.z/.
Specifically for two-sided sequences some poles correspond to right-
sided sequence components, while others correspond to left-sided
sequence components. The inner radius, rR, is given by the right-
sided sequence pole with largest magnitude and the outer radius, rL,
is given by the left-sided sequence pole with smallest magnitude.
The complete ROC is then the intersection of the right-sided and
left-sided sequence ROCs.
Property 8: The ROC must be a connected region.
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Example 3.6: A Three Pole Signal

Consider the pole-zero pattern shown below

Re

Im

z-plane
Unit
Circle

a b c

A three pole X.z/

� IfX.z/ has three poles, then there are four possible choices for
the ROC

Re

Imz-plane

a b c Re

Imz-plane

a b c

Case (a) fz W jzj > cg and (b) fz W jzj < ag
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3.3. PROPERTIES OF THE ROC

Re

Imz-plane

a b c Re

Imz-plane

a b c

Case (c) fz W a < jzj < bg and (d) fz W b < jzj < cg

Example 3.7: Stability, Causality, and the ROC

� Consider an LTI system having a z-transform with the follow-
ing pole-zero plot:

Re

Im

z-plane
Unit
Circle

1

2
---2–

2 zeros

Pole-zero plot of H.z/

� There are three valid ROCs for this system

ECE 5650/4650 Modern DSP 3-19



CONTENTS

� If the system is known to be stable (hŒn� absolutely summable),
then the ROC must include the unit circle, so ROC: 1=2 <
jzj < 2

– Under this condition the system is not causal since we
have right and left sided terms

� On the other hand if it is known that the system is causal, then
it must be that the ROC is the exterior of the circle correspond-
ing to the largest pole radius, ROC: jzj > 2

– Now it is clear that the system can no longer be stable
because of a pole contributing a right sided sequence of
the form .�2/nuŒn�

� In summary, for this system it is not possible to be both stable
and causal
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3.3. PROPERTIES OF THE ROC

3.3.1 ROC Summary for Finite-Duration Signals

n

Causal

0

Entire z-plane
except z = 0

n

Anticausal

0

Entire z-plane

n

Two-Sided

0

Entire z-plane
except z = 0

except z ∞=

and z ∞=

Signal ROC

3.3.2 ROC Summary for Infinite-Duration Sig-
nals

n

Causal

0

n

Anticausal

0

n

Two-Sided

0

. . .

. . .

. . . . . .

z r2>

z r1<

r2 z r1< <

r2

r2

r1

r1

Signal ROC
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3.4 The Inverse z-Transform

Eventually we will be analyzing LTI systems in the z-domain. Ulti-
mately we may wish to compute the inverse z-transform that results
from some algebraic manipulation of z-transforms.

Formally the inverse z-transform is defined as the contour inte-
gral

xŒn� D
1

2�j

�
C

X.z/zn�1 dz

where the contour C encircles the origin and is chosen to lie inside
the ROC. We can evaluate this contour integral using the Cauchy
integral theorem.

Formal evaluation of the contour integral has traditionally been a
part of this course. Learning the contour integration approach is not
absolutely essential, however. The second and third editions of the
O&S text omits this topic in favor of other newer DSP topics added
elsewhere in the text. For historical reasons inverse z-transformation
using contour integration is still found in this note set, including a
short overview of the needed complex variable theory.

Inversion techniques that are less formal, but get the job done,
will be the focus in this course. The techniques or procedures are:
the inspection method, partial fraction expansions, and power series
expansion.

3.4.1 Inspection Method

With this technique we perform the inverse transform “by inspec-
tion” with the aid of a table of transform pairs
A Short Table of z-Transform Pairs
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3.4. THE INVERSE Z-TRANSFORM

xŒn� X.z/ ROC
ıŒn� 1 all z
ıŒn �m� z�m all z except z D 0 if m > 0

and jzj D 1 if m < 0

anuŒn� 1
1�az�1 jzj > jaj

�anuŒ�n � 1� 1
1�az�1 jzj < jaj

nanuŒn� az�1

.1�az�1/2
jzj > jaj

�nanuŒ�n � 1� az�1

.1�az�1/2
jzj < jaj

.nC1/.nC2/���.nCk�1/

.k�1/Š
anuŒn� 1

.1�az�1/k
jzj > jaj

rn cos.!on/uŒn�
1�.r cos!o/z

�1

1�.2r cos!o/z�1Cr2z�2 jzj > r

rn sin.!on/uŒn�
.r sin!o/z

�1

1�.2r cos!o/z�1Cr2z�2 jzj > r

cosh.nb/uŒn� 1�.cosh b/z�1

1�.2 cosh b/z�1Cz�2 jzj > maxfjebj; je�bjg

sinh.nb/uŒn� .sinh b/z�1

1�.2 cosh b/z�1Cz�2 jzj > maxfjebj; je�bjg�
an; 0 � n � N � 1

0; otherwise
1�aN z�N

1�az�1 jzj > 0

3.4.2 Partial Fraction Method

If X.z/ cannot be found directly from a table entry, we may be able
to rewrite it as a collection of table entries using a partial fraction
expansion.

To begin with assume that X.z/ is a rational function, then we
can write

X.z/ D
N.z/

D.z/
D

PM
kD0 bkz

�kPN
kD0 akz

�k

D
zN
PM

kD0 bkz
M�k

zM
PN

kD0 akz
N�k

� As written above X.z/ has N poles and M zeros at nonzero
locations in the z-plane

� If M > N there will also be M �N poles at z D 0
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� If N > M there will be N �M zeros at z D 0

� In all cases the total number of poles equals the total number
of zeros

� X.z/ is a proper rational function if aN ¤ 0 and M < N

� If M � N then X.z/ is an improper rational function, which
by using long division of the numerator by the denominator
can be written as the sum of a polynomial and another proper
rational function i.e.,

X.z/ D
N.z/

D.z/
D

M�NX
rD0

Brz
�r
C
N1.z/

D.z/

whereN1.z/ is the remainder polynomial having degree less than
N

Distinct Poles

� If X.z/ is a proper rational function and D.z/ contains no re-
peated roots, then we can write X.z/ as

X.z/ D

NX
kD1

Ak

1 � dkz�1

where the dk’s are the nonzero poles of X.z/

� Note: To avoid confusion with the text we will expand X.z/
as shown above using negative powers of z, however in many
texts the expansion is done using positive powers of z, then
the transform pair tables are modified accordingly to contain
factors of the form z � dk
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3.4. THE INVERSE Z-TRANSFORM

� For the distinct poles case the coefficients, Ak, are given by

Ak D .1 � dkz
�1/X.z/jz�1Dd�1

k

� If M � N then the expansion is performed on the proper ra-
tional function N1.z/=D.z/ so that

X.z/ D

M�NX
rD0

Brz
�r
C

NX
kD1

Ak

1 � dkz�1

Multiple-Order Poles

� Suppose that X.z/ has a pole of multiplicity s at z D di , then
the general form of the partial fraction expansion is

X.z/ D

M�NX
rD0

Brz
�r
C

NX
kD1;k¤i

Ak

1 � dkz�1
C

sX
mD1

Cm

.1 � diz�1/m

� The coefficients Ak and Br are obtained as before. The Cm’s
are obtained from

Cm D
1

.s �m/Š.�di/s�m

�

�
d s�m

dws�m
Œ.1 � diw/

sX.w�1/�

�
wDd�1i

� If X.z/ contains several multiple-order poles, then the partial
fraction expansion will contain a term of the form

siX
miD1

Cmi

.1 � diz�1/mi

for each multiple-order pole
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General Inversion Procedure

� Suppose initially thatX.z/ contains only first order poles, then
for the polynomial terms we use

BrıŒn � r�
Z
 ! Brz

�r

� For the Ak=.1 � dkz�1/ terms we need to consider the general
form of the ROC: rR < jzj < rL

– If the pole z D dk has jdkj � rR then the corresponding
sequence is right-sided and we inverse transform using

Akd
n
kuŒn�

Z
 !

Ak

1 � dkz�1

– If the pole z D dk has jdkj � rL then the corresponding
sequence is left-sided and we inverse transform using

�Akd
n
kuŒ�n � 1�

Z
 !

Ak

1 � dkz�1

� Multiple-order poles are divided into left-sided and right-sided
sequence contributions in the same way
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Example 3.8:
Consider a sequence xŒn� with z-transform

X.z/ D
1C 2z�1 C z�2

1 � 3
2
z�1 C 1

2
z�2

; ROC D jzj > 1

� To begin with note that M D N D 2 which implies that be-
fore performing the partial fraction expansion we must perform
long division to reduce the remainder poly N1.z/ to degree 1,
i.e.

2
1
2
z�2 � 3

2
z�1 C 1

�
z�2C 2z�1 C 1

z�2� 3z�1 C 2

5z�1 � 1

The division is stopped when the order of the remainder is
z�.N�1/ D z�1.

� We can now write

X.z/ D 2C
5z�1 � 1

1 � 3
2
z�1 C 1

2
z�2

� Next the denominator poly is factored into two real roots, i.e.

D.z/ D

�
1 �

1

2
z�1

�
.1 � z�1/

� The partial fraction expansion is

X.z/ D 2C
A1

1 � 1
2
z�1
C

A2

1 � z�1
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� Solve for A1 and A2

A1 D
�1C 5z�1

1 � z�1

ˇ̌̌̌
z�1D2

D
�1C 10

1 � 2
D �9

A2 D
�1C 5z�1

1 � 1
2
z�1

ˇ̌̌̌
ˇ
z�1D1

D
�1C 5

1 � 1
2

D 8

� Finally

X.z/ D 2 �
9

1 � 1
2
z�1
C

8

1 � z�1

� Since both poles have magnitude less than or equal to one, the
exponential sequences are right-sided, thus

xŒn� D 2ıŒn� � 9

�
1

2

�n
uŒn�C 8uŒn�

Example 3.9:
Since the X.z/ in the previous example contains two distinct

poles there are a total of three valid ROC definitions. The two re-
maining cases are:

case 2: ROC D jzj < 1
2

) xŒn� D 2ıŒn�C 9
�
1
2

�n
uŒ�n � 1� � 8uŒ�n � 1�

case 3: ROC D 1
2
< jzj < 1

) xŒn� D 2ıŒn� � 9
�
1
2

�n
uŒn� � 8uŒ�n � 1�
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Example 3.10:
Find the inverse z-transform of

X.z/ D
1

.1C z�1/.1 � z�1/2
; ROC D jzj > 1

� Observe that X.z/ has a simple pole at z D �1 and a repeated
pole at z D 1, thus the partial fraction expansion is of the form

X.z/ D
A1

1C z�1
C

C1

1 � z�1
C

C2

.1 � z�1/2

� We can immediately solve for A1

A1 D
1

.1 � z�1/2

ˇ̌̌̌
z�1D�1

D
1

22
D
1

4

� Using the multiple-pole coefficients formula

C1 D
1

1Š.�1/1

�
d

d w

�
1

1C w

��
wD1

D
1

4

C2 D
1

0Š.�1/0

�
1

1C w

�
wD1

D
1

2

� Thus we can write

X.z/ D
1=4

1C z�1
C

1=4

1 � z�1
C

1=2

.1 � z�1/2

� To invert term-by-term we note that each term is associated
with a right-sided exponential sequence and use the fact that

.nC 1/anuŒn�
Z
 !

1

.1 � az�1/2
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Hence,

xŒn� D
1

4
.�1/nuŒn�C

1

4
uŒn�C

1

2
.nC 1/uŒn�

Inversion of Distinct Complex Conjugate Pole Pairs

Consider the partial fraction expansion of a general complex con-
jugate pole pair (N.z/ is of degree one and assumed to have real
coefficients)

Xk.z/ D
b0 C b1z

�1

.1 � dkz�1/.1 � d
�

k z
�1/

D
Ak

1 � dkz�1
C

Akk

1 � d �k z
�1

� Solving for the coefficients we have

Ak D
b0 C b1=dk

1 � d �k =dk

Akk D
b0 C b1=d

�

k

1 � dk=d
�

k

D A�k

� Thus we see that the coefficients in the expansion are also con-
jugates

� Assuming the ROC is jzj > jdkj the inverse transform is the
right-sided sequence

xkŒn� D
�
Ak.dk/

n
C A�k.d

�

k /
n
�
uŒn�

D jAkjr
n
k

�
ej.ˇknC˛k/ C e�j.ˇknC˛k/

�
uŒn�

D 2jAkjr
n
k cos.ˇknC ˛k/uŒn�
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where

Ak D jAkje
j˛k

dk D rke
jˇk

� We now have a new transform pair

2jAkjr
n
k cos.ˇknC ˛k/uŒn�

Z
 !

Ak

1 � dkz�1
C

A�k
1 � d �k z

�1
;

with ROCD jzj > jdkj D rk

� Observe now that a complex conjugate pole pair with ROC
jzj > jdkj corresponds to a causal sinusoidal sequence with
exponential envelope

� The distance of the pole from the origin determines the expo-
nential weighting (rk > 1 growing, rk < 1 decaying)

� The angle the poles make to the positive real axis determines
the sinusoidal frequency on the interval Œ0; ��

Example 3.11:
Given a causal signal with z-transform

X.z/ D
1C z�1

1 � z�1 C 1
2
z�2

� X.z/ is a proper rational function with poles d1 D 1=2˙ j1=2

� The partial fraction expansion is

X.z/ D
A1

1 � d1z�1
C

A�1
1 � d �1 z

�1

ECE 5650/4650 Modern DSP 3-31



CONTENTS

where it can be shown that A1 D 1=2 � j 3=2

� In polar form we can write

A1 D

p
10

2
e�j 71:565

ı

d1 D
1
p
2
ej�=4

� Using the z-transform pair defined above we can immediately
write

xŒn� D
p
10

�
1
p
2

�n
cos

��n
4
� 71:565ı

�
uŒn�

3.4.3 Power Series expansion

By definition

X.z/ D

1X
nD�1

xŒn�z�n

D � � � C xŒ�2�z2 C xŒ�1�z C xŒ0�

C xŒ1�z�1 C xŒ2�z�2 C � � �

By finding the coefficient of a particular z�n in a series expansion of
X.z/ we obtain xŒn� term-by-term.

� For X.z/ D N.z/ (i.e. D.z/ D 1) xŒn� can be obtained by
inspection

� If X.z/ D N.z/=D.z/ we may use long division to obtain
powers of z�1 if the ROC implies a right-sided sequence, and
powers of z1 if the ROC implies a left-sided sequence
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Example 3.12:
Given X.z/ D z2 � 1

2
z � 1C 1

2
z�1 find xŒn�.

� By inspection

xŒn� D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1; n D �2

�1=2; n D �1

�1; n D 0

1=2; n D 1

0; otherwise

� Alternatively,

xŒn� D ıŒnC 2� �
1

2
ıŒnC 1� � ıŒn�C

1

2
ıŒn � 1�

Example 3.13:
Inverse transform

X.z/ D
1

1 � az�1
; ROC D jzj > jaj

� Since the ROC is the exterior of a circle) xŒn� is right-sided,
so divide to obtain powers of z�1

1C az�1 C a2z�2 C � � �

1 � az�1
�
1

1� az�1

az�1

az�1 � a2z�2

a2z�2
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so
1

1 � az�1
D 1C az�1 C a2z�2 C � � �

which implies that

xŒn� D ıŒn�C aıŒn � 1�C a2ıŒn � 2�C � � �

D anuŒn�

Example 3.14:
Find the inverse z-transform of

X.z/ D ln.1C az�1/; ROC D jzj > jaj

� For z 2 ROC we can use the power series expansion for ln.1C
x/ valid for jxj < 1

X.z/ D

1X
nD1

.�1/nC1anz�n

n

� Inverse transforming term-by-term we obtain

xŒn� D

�
.�1/nC1a

n

n
; n � 1

0; n � 0
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3.4.4 Time-Domain Responses for a Single Real
Pole
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3.4.5 Time-Domain Responses for a Double Real
Pole
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3.4.6 Time-Domain Responses for a Conjugate
Pole Pair
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Example 3.15: The Inverse z-Transform Using Python

� Scipy has supplied functions for performing partial fraction ex-
pansions in both the s-domain and the z-domain. The best
function for working with z-transforms, residuez(), is con-
tained in the signal processing module (scipy.signal).

� The help description is the following:

Definition: signal.residuez(b, a, tol=0.001, rtype=’avg’)
Docstring: Compute partial-fraction expansion of b(z) / a(z).

If ‘‘M = len(b)‘‘ and ‘‘N = len(a)‘‘::

b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = ------ = ----------------------------------------------

a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...

(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like::

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

See also
--------
invresz, unique_roots

� Consider the z-transform

X.z/ D
1C 2z�1 C z�2

1 � 3
2
z�1 C 1

2
z�2

; ROC:jzj > 1

� Using residuez() the solution is

3-38 ECE 5650/4650 Modern DSP



3.4. THE INVERSE Z-TRANSFORM

In [22]: import scipy.signal as signal
In [23]: R,P,K = signal.residuez([1, 2, 1],[1, -3./2, 1./2])

In [24]: R
Out[24]: array([-9., 8.])

In [25]: P
Out[25]: array([ 0.5, 1. ])

In [26]: K
Out[26]: array([ 2.])

� From the above we can then write that

X.z/ D 2C
8

1 � z�1
C

�9

1 � 0:5z�1
; jzj > 1

� Inverse transforming term-by-term yields

xŒn� D 2ıŒn�C 8uŒn� � 9.0:5/nuŒn�

� As a second example consider the z-transform

X.z/ D
1

.1C z�1/.1 � z�1/2
; ROC:jzj > 1

� Using residuez() the solution is

In [32]: R,P,K = signal.residuez([1],signal.convolve([1,1],
signal.convolve([1,-1],[1,-1])))

In [33]: R
Out[33]: array([ 0.25, 0.25, 0.5 ])

In [34]: P
Out[34]: array([-1., 1., 1.])

In [35]: K
Out[35]: array([ 0.])
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� The above results indicate that

X.z/ D
0:25

1 � z�1
C

0:5

.1 � z�1/2
C

0:25

1C z�1
; jzj > 1

� Thus a term-by-term inversion yields

xŒn� D 0:25uŒn�C 0:5.nC 1/uŒn�C 0:25.�1/nuŒn�

3.5 z-Transform Properties

The z-transform properties considered here parallel those of the Fourier
transform. In the following we will assume that

xi Œn�
Z
 ! Xi.z/; ROC D Rxi ; i D 1; 2; : : :

� Linearity:

ax1Œn�C bx2Œn�
Z
 ! aX1.z/C bX2.z/

with ROCD Rx1 \Rx2.

Note: If the sum of X1.z/ and X2.z/ introduces a pole-zero
cancellation, then the ROC may be larger than indicated (e.g.
rectangular window sequence example notes Example 3.5 or
O&S Example 3.6)
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� Time-Shifting:

xŒn � no�
Z
 ! z�noX.z/; ROC D Rx

Note that z D 0 or jzj ! 1may be added or deleted from the
ROC.

The proof follows directly from the definition.

We will see later that for the one-sided z-transform this theo-
rem is modified. This theorem is important in solving LCCDEs
with nonzero initial conditions.

Example 3.16:
Find the inverse z-transform of

X.z/ D
z�1

1 � 1
4
z�1

; ROC D jzj >
1

4

� Since M D N D 1 to use partial fractions we would first use
long division to write

X.z/ D �4C
4

1 � 1
4
z�1

� It immediately follows that

xŒn� D �4ıŒn�C 4

�
1

4

�n
uŒn�

D 4

�
1

4

�n
„ ƒ‚ …
.14/

n�1

uŒn � 1�
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� Using the shifting theorem we can also approach the problem
as

xŒn� D Z�1
(

z�1

1 � 1
4
z�1

)
D Z�1

(
1

1 � 1
4
z�1

)
n!n�1

D

�
1

4

�n�1
uŒn � 1�

� Multiplication by an Exponential:

zn0xŒn�
Z
 ! X.z=z0/; ROC D jz0jRx

where the notation used for the new ROC implies that Rx D
fz W rR < jzj < rLg ) ROC D fz W jz0jrR < jzj < jz0jrLg.

Multiplication by a positive real zn0 corresponds to a shrink-
ing or expanding of the z-plane, while multiplication by ej!o

corresponds to a rotation in the z-plane by an angle !o.

proof

Y.z/ D Zfzn0xŒn�g D
1X

nD�1

zn0xŒn�z
�n

D

1X
nD�1

xŒn�.z=z0/
�n
D X.z=z0/

� Differentiation of X.z/:

nxŒn�
Z
 ! �z

dX.z/

dz
; ROC D Rx
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Note that z D 0 or jzj ! 1may be added or deleted from the
ROC.

proof

�z
dX.z/

dz
D �z

1X
nD�1

.�n/xŒn�z�n�1

D

1X
nD�1

nxŒn�z�n D ZfnxŒn�g

Example 3.17:
Determine the z-transform of the sequence

xŒn� D nanuŒn� D n.anuŒn�/

� Direct application of the theorem yields

X.z/ D �z
d

dz

�
1

1 � az�1

�
; jzj > jaj

thus

nanuŒn�
Z
 !

az�1

.1 � az�1/2
; jzj > jaj

� Conjugation of a Sequence:

x�Œn�
Z
 ! X�.z�/; ROC D Rx

The proof follows from the definition.
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� Time Reversal:

xŒ�n�
Z
 ! X.1=z/; ROC D

1

Rx

where the notation used for the new ROC implies that Rx D
fz W rR < jzj < rLg ) ROC D fz W 1=rL < jzj < 1=rRg.

The proof follows from the definition.

Example 3.18:
Determine the z-transform of uŒ�n�

� We know that

uŒn�
Z
 !

1

1 � z�1
; ROC D jzj > 1

� Applying the theorem

uŒ�n�
Z
 !

1

1 � z
D
�z�1

1 � z�1
; ROC D jzj < 1

� Convolution of Sequences:

x1Œn� � x2Œn�
Z
 ! X1.z/X2.z/

where ROCD Rx1 \ Rx2 or larger if pole-zero cancellation
occurs
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proof

Let

yŒn� D

1X
kD�1

x1Œk�x2Œn � k�

Then

Y.z/ D

1X
nD�1

(
1X

kD�1

x1Œk�x2Œn � k�

)
z�n

D

1X
kD�1

x1Œk�

1X
nD�1

x2Œn � k�z
�n

Now let n! m D n � k then,

Y.z/ D

1X
kD�1

x1Œk�

(
1X

mD�1

x2Œm�z
�m

)
œ

X2.z/

z�k

D

1X
kD�1

x1Œk�z
�kX2.z/ D X1.z/X2.z/

Example 3.19:
Let x1Œn� D anuŒn� and x2Œn� D uŒn� and find yŒn� D x1Œn� �

x2Œn�.

� Using the transform pair tables we can write

X1.z/ D
1

1 � az�1
; ROC D jzj > jaj

X2.z/ D
1

1 � z�1
; ROC D jzj > 1
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� The transform of Y.z/ is

Y.z/ D
1

.1 � z�1/.1 � az�1/
;

ROC D jzj > maxf1; jajg

� Suppose that jaj < 1 then the ROC is as shown below

Re

Im

z-plane

1a

Region of
Convergence

Pole-zero plot and ROC, jzj > 1, for yŒn�

� Using a partial fraction expansion we can write

Y.z/ D
1

1 � a

�
1

1 � z�1
�

a

1 � az�1

�
; ROC D jzj > 1

� Term-by-term inversion yields

yŒn� D
1 � anC1

1 � a
uŒn�
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� Initial Value Theorem: For xŒn� a causal sequence (i.e. xŒn� D
0; n < 0), then

xŒ0� D lim
z!1

X.z/

proof

Since xŒn� is causal

X.z/ D

1X
nD0

xŒn�z�n D xŒ0�C xŒ1�z�1 C xŒ2�z�2 C � � �

Clearly, as z !1; z�n! 0 for n > 0, thus the result follows

3.6 Inverse z-Transform Using Contour
Integration

To develop the contour integration technique for computing the in-
verse z-transform we will first study some important results from the
theory of complex variables. Then the complex inversion integral
formula will be developed, followed by a discussion of evaluation
techniques using the residue theorem.

3.6.1 Complex Variable Background

Definition: The neighborhood of a point zo in the complex plane is
the open circular disk jz � zoj < � where � > 0 is an arbitrary real
constant.

Definition: A function F.z/ is analytic or regular at a point z D zo
if it is defined at that point and has a derivative at every point in some

ECE 5650/4650 Modern DSP 3-47



CONTENTS

neighborhood of zo. Note: If the derivative at zo exits it must be the
same regardless of the direction of approach used in the limit.

Definition: A function having at least one analytic point is called an
analytic function.

Definition: If the function F.z/ is not analytic at zo, then zo is called
a singular point.

3.6.2 Cauchy’s Integral Theorem:

Let the function F.z/ of complex variable z be analytic everywhere
on and within a simple (non-crossing) closed curve C in the z-plane.
Then �

C

F.z/ dz D 0

where the line integral is evaluated along any C in a counterclock-
wise direction.

Re

Im

z-plane

0

C

F z( ) Analytic

F z( )dz

C
∫° 0=

Cauchy Integral Theorem
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� Suppose that F.z/ has a singularity at z D zo which is inside
of C , then �

C

F.z/ dz ¤ 0

Re

Im
z-plane

0

C

Isolated
Singularity

z0

F z( )dz
C
∫° 0≠

Contour integral 

with an isolated sin-

gularity.

� To apply Cauchy’s integral theorem we define a new contour
C C C1 C C

0 C C2 which avoids the singularity at z D zo�
C

F.z/ dz C

�
C1

F.z/ dz C

�
C2

F.z/ dz C

�
C 0
F.z/ dz D 0

Re

Im

z-plane

0

C

z0

δ
θ

ε

C'

C1

C2

F z( )dz
C
∫° 0≠

Contour integral 

satisfying Cauchy’s 

integral theorem.
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� As the gap � ! 0 we see that the contributions from C1 and
C2 will cancel with the result being�

C

F.z/ dz
�!0
D �

�
C 0
F.z/ dz

� Now consider the contour C 0 which consists of the point set
fz W z � zo D ıe

j� ; 0 � � < 2�g

� If we assume that ı is infinitesimal, then we can write

F.z/ D
G.z/

z � zo
�
G.zo/

z � zo
; z 2 C 0

whereG.z/ is F.z/with the singularity at z D zo factored out,
thus making G.z/ analytic at z D zo

� The contour integral over C 0 as ı ! 0 can now be evaluated
using the change of variables dz ! d.z � zo/ D d.ıej�/ D

jıej� d� , �
C

F.z/ dz D

Z 2�

0

G.zo/

ıej�
jıej� d�

D 2�jG.zo/

The minus sign is removed due to the fact that a clockwise
contour has been used (i.e. Œ0; 2�� vs Œ2�; 0�)

� If F.z/ contains higher order singularities (poles) inside of C ,
then it can be shown that�

C

F.z/ dz D

�
C 0

G.z/

.z � zo/s
dz

D
2�j

.s � 1/Š

�
d s�1G.z/

dzs�1

�ˇ̌̌̌
zDzo„ ƒ‚ …

RoD residue at z D zo
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which is really just a more general form of Cauchy’s integral
theorem

3.6.3 Cauchy’s Residue Theorem:

Let F.z/ be analytic everywhere on and within a simple closed con-
tour C except at isolated singular points z1; z2; : : : ; zN . Then�

C

F.z/ dz D 2�j

NX
nD1

Rn

where theRn’s are the residues of F.z/ D G.z/=.z�zn/s at z D zn,
n D 1; : : : ; N .

3.6.4 Complex Inversion Integral

By definition

X.z/ D

1X
nD�1

xŒn�z�n

� To obtain the inverse z-transform multiply both sides of the
above equation by zk�1=.2�j / and integrate counterclockwise
around a contour
which encloses the origin and also lies within the ROC ofX.z/

1

2�j

�
C

X.z/zk�1 dz D
1

2�j

�
C

1X
nD�1

xŒn�z�nCk�1 dz

� The above equation may be reduced on the right side using
a special case of the Cauchy integral theorem (i.e. F.z/ D
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z�k=.2�j /)

1

2�j

�
C

z�nCk�1 dz D

�
1; k D n

0; k ¤ n

proof:

– To begin with we assume that the contour C encircles the
origin in a counter clockwise fashion. Now from Cauchy’s
residue theorem we know that

1

2�j

�
C

F.z/ dz D
X

Residues of F.z/ inside C

Here F.c/ D z�k

– For k D 1, F.z/ D G.z/=.z � 0/ D 1=z, which implies
that F.z/ has a single first-order residue at z D 0, thus

1

2�j

�
C

F.z/ dz D G.0/ D 1

– For k > 1, F.z/ D G.z/=zk D 1=zk, which implies that
F.z/ has a single kth-order residue at z D 0, thus

1

2�j

�
C

F.z/ dz D
1

.k � 1/Š

�
d k�1

dzk�1
1

�ˇ̌̌̌
zD0

D 0

– Finally we conclude that

1

2�j

�
C

z�k dz D

(
1; k D 1

0; k ¤ 1
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� The first step in reducing the right side is to interchange the
order of integration and summation (valid since the series con-
verges on the chosen contour)

1

2�j

�
C

X.z/zk�1 dz D

1X
nD�1

xŒn�
1

2�j

�
C

z�nCk�1 dz

D xŒk�

� Turning the above relation around we have the inverse z-transform

xŒn� D
1

2�j

�
C

X.z/zn�1 dz

� Note in particular if the ROC includes the unit circle, then let-
ting C ! z D ej!, results in dz ! jej! d!, and

xŒn� D
1

2�

Z �

��

X.ej!/ej!n d!

which is the inverse Fourier transform expression

3.6.5 Complex Inversion Integral Evaluation us-
ing the Residue Theorem

From the Cauchy residue theorem we can write that

xŒn� D
X

Œresidues of X.z/zn�1 at the poles inside C �

� If X.z/ is a rational function in z then we may write X.z/zn�1

as
X.z/zn�1 D

 .z/

.z � do/s

for a pole of order s in the productX.z/zn�1 and  .z/ analytic
at z D do
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� The general formula (from Cauchy’s integral theorem) is

ResŒX.z/zn�1 at z D do� D
1

.s � 1/Š

�
d s�1 .z/

dzs�1

�
zDdo

� For first-order poles the simpler result

ResŒX.z/zn�1 at z D do� D  .do/

may be used

� Note that finding residues of X.z/zn�1 is basically the same as
finding the partial fraction expansion coefficients

� A common complication that arises when using the residue
method to solve for xŒn� is the presence of multiple order poles
at z D 0 for n < 0 (e.g. X.z/zn�1 D  .z/zn=.z � do/)

� A solution is to perform a transformation in the complex inver-
sion integral by letting z ! 1=p, then we have

xŒn� D �
1

2�j

�
C 0
X.1=p/.1=p/n�1

�
�
1

p2

�
dp

D
1

2�j

�
C 0
X.1=p/p�n�1 dp

D

X
ResŒX.1=p/p�n�1 at poles inside C 0�

where C 0 is a circle of radius 1=r in the p-plane if C is a circle
of radius r in the z-plane and poles outside of C in the z-plane
are now poles inside of C 0 in the p-plane

� Note the extra minus sign is used to make a clockwise con-
tour (from z ! 1=p) into a more familiar counterclockwise
contour
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Example 3.20:
Using the complex inversion integral find the inverse z-transform

of

X.z/ D
1

1 � az�1
; jzj > jaj

� In terms of the complex inversion integral xŒn� is

xŒn� D
1

2�j

�
C

zn�1

1 � az�1
dz D

1

2�j

�
C

zn dz

z � a

where C is chosen to be a circle with radius greater than jaj

� For n � 0 the contour encloses a simple pole at z D a

Re

Im

z-plane

a

C

z-plane showing C and the poles of X.z/zn�1 for n � 0

� The residue of the pole at z D a is simply an, thus

xŒn� D an; n � 0
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� For n < 0 the contour encloses a simple pole at z D a and a
multiple pole (of order s D �n) at z D 0, thus two residues
must be evaluated

Re

Im

z-plane

a

C

z-plane showing C and the poles of X.z/zn�1 for n < 0

� To avoid the tedium of evaluating the multiple-order pole at
z D 0, we can use the variable change z ! 1=p in the contour
integral. Thus,

X.1=p/ D
1

1 � ap
; jpj < j1=aj

and

xŒn� D
1

2�j

�
C 0

p�n�1

1 � ap
dp

� The new contour, C 0, is a circle of radius less than j1=aj

� For n < 0 there are no singularities within C 0, thus

xŒn� D 0; n < 0
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Re

Im

p-plane

1

a
---

C'

p-plane showing C 0 and the poles of X.1=p/p�n�1 for n < 0

� In summary
xŒn� D anuŒn�

Example 3.21:
Find the inverse z-transform of

X.z/ D
z3 C 2z2 C 3z

.z � 1
2
/.z2 � 2z C 4/

; jzj > 2

using contour integration.

� The contour integral we must evaluate is

xŒn� D
1

2�j

�
C

zn.z2 C 2z C 3/

.z � 1
2
/.z2 � 2z C 4/

dz

� Let C be a circle with radius greater than 2
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� For n � 0 we have three poles within C : z1 D 1=2, z2 D
1C j

p
3, and z3 D 1 � j

p
3

Re

Im

z-plane

1 2⁄

C

2

z-plane showing C and the poles of X.z/zn�1 for n � 0

� The corresponding residues are:

R1 D zn
z2 C 2z C 3

z2 � 2z C 4

ˇ̌̌̌
zD12

D
17

13

�
1

2

�n
R2 D zn

z2 C 2z C 3

.z � 1
2
/Œz � .1 � j

p
3/�

ˇ̌̌̌
ˇ
zD1Cj

p
3

D
�1 � j 9

p
3

13
.1C j

p
3/n

R3 D R�2 D
�1C j 9

p
3

13
.1 � j

p
3/n

thus
xŒn� D R1 CR2 CR3; n � 0
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� For n < 0 we have a multiple-order pole at z D 0 in addition
to the same three poles present for n � 0

Re

Im

z-plane

1 2⁄

C

2

z-plane showing C and the poles of X.z/zn�1 for n < 0

� If we change variables in the contour integral using z ! 1=p,
then the new contour, C 0, becomes a circle with radius less
than 1=2 in the p-plane and the poles are now at p1 D 2,
p2 D .1C j

p
3/�1, and p3 D .1 � j

p
3/�1

Re

Im

p-plane

1

2
---

C'

2

p-plane showing C and the poles of X.1=p/p�n�1 for n < 0
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� Note that for n < 0 there are no poles within C 0, thus

xŒn� D 0; n < 0

� Summarizing we can write

xŒn� D

"
17

13

�
1

2

�n
C

 
�2 � j 9

p
3

13

!
.1C j

p
3/n

C

 
�2C j 9

p
3

13

!
.1 � j

p
3/n

#
uŒn�

� Note that the complex exponentials can be simplified by first
writing

�2 � j 9
p
3

13
D 1:209e�97:3

ı

and 1C j
p
3 D 2ej�=3

� Using the results for conjugate pole pairs found on page 3-27
of the notes we can write

xŒn� D

�
17

13

�
1

2

�n
C 2:418.2/n cos

h�
3
n � 97:3ı

i�
uŒn�
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3.7 Contour Integration Based Thrms.

In this section special z-transform theorems that rely on contour in-
tegration are presented. For most applications these theorems find
little use, but there are occasions where using them can be very help-
ful.

3.7.1 Complex Convolution Theorem

The modulation or multiplication theorem as developed in Chapter 2
page 2-70 resulted in a periodic convolution in the Fourier transform
domain. In the z-transform this result generalizes to the complex
convolution theorem.

The theorem states that given

x1Œn�
Z
 ! X1.z/ and x2Œn�

Z
 ! X2.z/

then

W.z/ D Zfz1Œn�z2Œn�g

D
1

2�j

�
C2

X1.z=v/X2.v/v
�1 dv

where the contour C2 is chosen to lie in the intersection of the ROCs
of X1.z=v/ and X2.v/.

� To find the ROC for W.z/ first consider the proper region for
C2. Suppose that x1Œn� and x2Œn� have the following ROCs

ROCx1 W rR1 < jzj < rL1

ROCx2 W rR2 < jzj < rL2
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� The contour C2 must lie in the v-plane such that

rR1 <
ˇ̌̌z
v

ˇ̌̌
< rL1 and rR2 < jvj < rL2

thus since jvjrR1 < jzj < jvjrL1, the ROC of W.z/ must at
least be

ROCw W rR1rR2 < jzj < rL1rL2

It may be a larger region if pole-zero cancellations occur.

proof

W.z/ D

1X
nD�1

x1Œn�x2Œn�z
�n

D

1X
nD�1

x1Œn�

�
1

2�j

�
C2

X2.v/v
n�1 dv

�
z�n

D
1

2�j

�
C2

"
1X

nD�1

x1Œn�.z=v/
�n

#
X2.v/v

�1 dv

D
1

2�j

�
C2

X1.z=v/X2.v/v
�1 dv

� If C2 can be taken on the unit circle, and W.z/ can also be
evaluated on the unit circle, then the resulting W.ej!/ is the
periodic convolution of Fourier transforms as seen in Chapter
2
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Example 3.22:
Let x1Œn� D anuŒn� and x2Œn� D bnuŒn� and find the z-transform

of wŒn� D x1Œn�x2Œn� using the complex convolution theorem.

� To begin with we need X1.z/ and X2.z/

X1.z/ D
1

1 � az�1
; jzj > jaj

X2.z/ D
1

1 � bz�1
; jzj > jbj

� Substitution into the contour integral gives

W.z/ D
1

2�j

�
C2

z=v

.z=v � a/

v

v � b
v�1 dv

D
1

2�j

�
C2

�.z=a/

.v � z=a/

1

v � b
dv

� Note that we have poles at v D b and v D z=a

� The contour C2 must be chosen such that

jvj > jbj and
ˇ̌̌z
v

ˇ̌̌
> jaj

or

jbj < jvj <
ˇ̌̌z
a

ˇ̌̌
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Re

Im

v-plane

b

C2

z

a
-----

The contour must be 

inside the annulus

The relation between the poles of the integrand and C2

� The ROC of W.z/ is simply jzj > jabj

� With C2 as shown above we see that only the pole at v D b

contributes a residue, thus

W.z/ D
�z=a

v � z=a

ˇ̌̌̌
vDb

D
1

1 � abz�1
; jzj > jabj

3.7.2 Parseval’s Relation

Parseval’s relation generalized to the z-transform states that for com-
plex sequences x1Œn� and x2Œn�

1X
nD�1

x1Œn�x
�

2 Œn� D
1

2�j

�
C

X1.v/X
�

2 .1=v
�/v�1 dv

where the contour C is chosen to lie in the intersection of the ROC
of X1.v/ and X�2 .1=v

�/.
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Special Case: As a special case suppose x1Œn� D x2Œn� D xŒn�,
and xŒn� is also real. Under these assumptions Parseval’s relation
becomes

1X
nD�1

x2Œn� D
1

2�j

�
C

X.v/X.v�1/v�1 dv

where C must lie in the ROC of X.z/.

� proof

To begin with define the sequence yŒn� as

yŒn� D x1Œn�x
�

2 Œn�

The z-transform of yŒn� is

Y.z/ D

1X
nD�1

x1Œn�x
�

2 Œn�z
�n

D
1

2�j

�
C

X1.v/X
�

2 .z
�=v�/v�1 dv

with the last line a direct result of the complex convolution
theorem.

If we let z D 1 in both quantities on the right (assuming the
ROC of Y.z/ contains the unit circle) we obtain

1X
nD�1

x1Œn�x
�

2 Œn� D
1

2�j

�
C

X1.v/X
�

2 .1=v
�/v�1 dv

which is the desired result.
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Example 3.23:

Suppose we have a right-sided real sequence xŒn�with z-transform

X.z/ D
1

.1 � az�1/.1 � bz�1/
; jaj; jbj < 1

Find the energy in the sequence xŒn�.

� From the special case of Parseval’s relation we can write

Ex D

1X
nD�1

x2Œn�

also
D

1

2�j

�
C

dv

.1 � av�1/.1 � bv�1/.1 � av/.1 � bv/v

D
1

2�j

�
C

v dv

.v � a/.v � b/.1 � av/.1 � bv/

� Note that there are poles at v D a; b; a�1, and b�1

� The contour C must satisfy the conditions

jvj > maxfa; bg and jv�1j > maxfa; bg

or

maxfa; bg < jvj < minf1=a; 1=bg
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Re

Im

v-plane

b

C

1

a
---

The contour must be 

inside the annulus

1

b
---

a

The relation between the poles of the integrand and C2

� Only the poles at v D a and v D b are inside the contour, thus
from the residue theorem

Ex D
v

.v � b/.1 � av/.1 � bv/

ˇ̌̌̌
vDa

C
v

.v � a/.1 � av/.1 � bv/

ˇ̌̌̌
vDb

D
a.1 � b2/ � b.1 � a2/

.a � b/.1 � a2/.1 � b2/.1 � ab/
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3.8 Unilateral z-Transform

Recall that the unilateral z-transform was defined as

X .z/ D
1X
nD0

xŒn�z�n

� If xŒn� D 0 for n < 0, then the bilateral and unilateral z-
transforms are equivalent

� The ROC of the unilateral transform is of the same general
form as the ROC of a bilateral transformed right-sided sequence,
i.e.

ROC D jzj > rR D maximum pole radius

Example 3.24:
Find both the bilateral and unilateral z-transforms of xŒn� D

ıŒn � no�.

� For no � 0

X.z/ D z�no and X .z/ D z�no

� For no < 0
X.z/ D z�no and X .z/ D 0

One of the primary uses of the unilateral z-transform is in solving
LCCDEs with non-zero initial conditions. Realizable LTI systems
are generally implemented using an LCCDE representation with causal-
ity assumed. The system output we desire is thus of the form yŒn� n �

0 for prescribed initial conditions.
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The linearity and time shift properties are both needed in the so-
lution of LCCDEs using the unilateral z-transform.

3.8.1 Time-Shifting Property

The time-shifting property changes when going from the bilateral
to the unilateral transform. To investigate this property let yŒn� D
xŒn � no�, then assuming xŒn�$ X .z/, find Y.z/.

� case 1: no � 0 (time delay)

Y.z/ D
1X
nD0

xŒn � no�z
�n

D z�no
�1X

kD�no

xŒk�z�k C z�no
1X
kD0

xŒk�z�k

D

noX
kD1

xŒk � 1 � no�z
�kC1
C z�noX .z/

� case 2: no < 0 (time advance)

Y.z/ D
1X
nD0

xŒn � no�z
�n
D z�no

1X
kD�no

xŒk�z�k

D z�no
1X
kD0

xŒk�z�k � z�no
�no�1X
kD0

xŒk�z�k

D z�noX .z/ � z�no
�no�1X
kD0

xŒk�z�k

ECE 5650/4650 Modern DSP 3-69



CONTENTS

For no � 0 the shifting property can be viewed as follows

Y.z/ D xŒ�no�C xŒ�no C 1�z
�1
C � � � C xŒ�1�z�noC1

C z�noX .z/

We see that by shifting xŒn� by no samples to the right, no new sam-
ples enter the positive time axis. The transform of these terms corre-
sponds to the first no terms in Y.z/ as given above. The old samples
of xŒn� shifted to the right by no have transform z�noX .z/ as ex-
pected from the bilateral time-shift property.

3.8.2 Solution of Causal LCCDEs

An N th order causal system with LCCDE representation can be
written as

NX
kD0

akyŒn � k� D

MX
rD0

brxŒn � r�

with initial conditions yŒ�N�; yŒ�N C 1�; : : : ; yŒ�1� and xŒ�M�,
xŒ�M C 1�; : : : ; xŒ�1�. We can solve this equation using the unilat-
eral z-transform.

� To begin with take the unilateral z-transform of both sides of
the above equation using the linearity property and the time-
shift property

Y.z/
NX
kD0

akz
�k
C

NX
kD1

akz
�k

�1X
mD�k

yŒm�z�m

Ÿ
Yi .z/
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D X .z/
MX
rD0

brz
�r
C

MX
rD1

brz
�r

�1X
mD�r

xŒm�z�m

�
Xi .z/

� Solve for Y.z/:

Y.z/ D X .z/
PM

rD0 brz
�rPN

kD0 akz
�k
�

Yi.z/PN
kD0 akz

�k

C
Xi.z/PN
kD0 akz

�k

� Finally to obtain yŒn� inverse z-transform Y.z/

Example 3.25:
Find the step response of the first order system

yŒn� D ayŒn � 1�C xŒn�; jaj < 1

with initial condition yŒ�1� D c

� Taking the unilateral z-transform of both sides we obtain

Y.z/ D afz�1Y.z/C yŒ�1�g C X .z/

� Solving for Y.z/ using yŒ�1� D c and X .z/ D 1=.1 � z�1/

results in

Y.z/ D
ac

1 � az�1
C

1

.1 � az�1/.1 � z�1/
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� Inverse transforming using partial fractions gives

yŒn� D canC1uŒn�C
1 � anC1

1 � a
uŒn�

� The Scipy signal.lfilter() function can also be used to
evaluate LCCDEs with nonzero initial conditions

� The filter topology used by the lfilter() is what is known as
Transposed Direct Form II, which will be discussed in Chapter
6

– The initial state stored in transposed Direct Form II delay
elements does not correspond to the standard form of this
section

– For the case of a first-order system we need to store ayŒn�
1� as opposed to just yŒn � 1�

� To see how this works we will demonstrate with a D 0:8,
yŒn � 1� D �1, and xŒn� D uŒn � 5�

In [53]: n = arange(0,21)
In [54]: x = ssd.dstep(n-5)
In [55]: y,zf = signal.lfilter([1],[1,-0.8],x,zi=[-1*0.8])
In [56]: figure(figsize=(6,4))
In [57]: stem(n,y)
In [58]: grid()
In [59]: xlabel(’Index n’)
In [60]: ylabel(r’$y[n]$’)
In [61]: savefig(’ch3note_fig29_export.pdf’)
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3.8. UNILATERAL Z-TRANSFORM

Decay of 
initial 
condition

-0.8 Would normally be 1 without IC

The output yŒn� with a D 0:8 and yŒn � 1� D �1
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