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7.1. INTRODUCTION

7.1 Introduction

Z&T Chapter 12 is devoted to information theory and coding. The
motivation for this study is original work of Claude Shannon in the
late 1940’s. Information theory provides a means to evaluate com-
munication system performance compared to a theoretically best
system for a given bandwidth and SNR.

� We can measure the information contained in a message and
determine how to best transfer the information from the source
to the destination

� Coding is a major application area of information theory

� The result is provided by Shannon’s coding theorem is that if a
source has information at a rate less than the channel capacity,
there exists a coding procedure such the source can be trans-
mitted with arbitrary small probability of error.

7.2 Information Theory

� What is information?

� For some event xj with corresponding probability p.xj /, the
information is defined as

I.xj / D loga

�
1

p.xj /

�
D � loga p.xj /

� Consistent with common sense, more information is conveyed
by events having a smaller probability
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� If the base a D 2, the units associated with information is the
binary unit or bit

7.2.1 Entropy

� The average information provided by a source or output, is
defined as the entropy

H.X/ D EfI.xj /g D �
nX

jD1
p.xj / log2 p.xj /

� The entropy of a binary source having p.1/ D ˛ and p.0/ D
1 � ˛ D ˇ is

H.˛/ D �˛ log2 ˛ � .1 � ˛/ log2.1 � ˛/

Entropy of a binary source as p.1/ D ˛ varies

� We have the maximum entropy when ˛ D 1=2; Is this reason-
able?

� For an n outcome source pk D 1=n for k D 1; : : : ; n, which
in turn gives the maximum entropy
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7.2. INFORMATION THEORY

7.2.2 Discrete Channel Models

� In discussions of information theory and coding, a discrete
memoryless channel (DMC) is often assumed

� The DMC is described in terms of conditional (transition) prob-
abilities that relate the channel input to the channel output state

Two-input three-output DMC

� The probabilities can be placed into a channel matrix

�
P.Y jX/� D

2
4
p.y1jx1/ p.y2jx1/ p.y3jx1/
p.y1jx2/ p.y2jx2/ p.y3jx2/
p.y1jx3/ p.y2jx3/ p.y3jx3/

3
5

�
P.Y jX/� D

�
0:7 0:3

0:4 0:6

�

Binary channel
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7.2.3 Joint and Conditional Entropy

� Beyond entropy defined earlier, we can also define conditional
entropy and joint entropy

� These additional forms are useful in defining channel capacity,
defined shortly

H.X/ D �
nX

iD1
p.xi/ log2 p.xi/

H.Y / D �
mX

jD1
p.yj / log2 p.yj /

H.Y jX/ D �
nX

iD1

mX

jD1
p.xi ; yj / log2 p.yj jxi/

H.X; Y / D �
mX

jD1
p.xi ; yj / log2 p.xi ; yj /

� Note that:

H.X; Y / D H.X jY /CH.Y /
D H.Y jX/CH.X/

7.2.4 Channel Capacity

� Using the definitions of joint and conditional entropy, we can
define the mutual information I.X IY /

I.X IY / D H.X/ �H.X jY / � 0
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7.2. INFORMATION THEORY

� If X is the channel input and Y is the channel output, the de-
crease in average uncertainty of the transmitted signal when it
is received, is the mutual information

� The channel capacity, C , is defined as the maximum value of
mutual information, that is the maximum average information
per symbol that can be transmitted through the channel upon
each use

C D maxŒI.X IY /�

C = max H (Y )−H (Y | X)[ ]
= H (Y )

max=1
+ p log2 p+ q log2 q

−H (Y |X )
  

= 1+ p log2 p+ q log2 q
= 1−H (p)

Capacity of the binary symmetric channel (BSC)

� C is a function of both the source probabilities and the channel
transition probabilities
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7.3 Source Coding

� Match the source to the channel via a data compression coding
scheme

� As an introductory example consider the following transmis-
sion scheme block diagram

� From what we know about the source entropyH.X/, the source
information rate is given by

Rs D rH.X/ bps

where r is the symbol rate in symbols per second H.X/ has
units of bits, actually bits per symbol

� The Shannon noiseless coding theorem states that

Given a channel and a source that generates infor-
mation at a rate less than the channel capacity, it is
possible to code the source output in a such a man-
ner that it can be transmitted through the channel

� In the above block diagram we assume a binary source with
outputs A and B having probability 0.9 and 0.1 respectively

� The source rate is 3.5 symbols/sec
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7.3. SOURCE CODING

� The channel capacity is one bit per symbol, since we assume
that we have a binary symmetric channel with p D 1
� The available symbol rate for the channel is S D 2 sym-

bols/sec

� Presently the source symbol rate being 3:5 > 2 symbols/sec,
means that we cannot send the source symbols directly over
the channel with negligible error

� Note that the source information rate, rH.x/, is

rH.x/ D 3:5� � 0:1 log2 0:1 � 0:9 log2 0:9
�

D 3:5 � 0:469 D 1:642 bps

� The source information rate is less than the channel capacity,
so transmission is possible, we just need to devise a source
code

� One simple approach is with order n extension of the original
source, that is n-symbol groups of source symbols are formed
and then assigned code words of increasing length as the sym-
bol probability decreases

Third-Order extension (n D 3) for the source coding example

ECE 5630 Communication Systems II 7-9



CHAPTER 7. INFORMATION THEORY AND CODING

� The average word length here is NL D 1:598
NL
n
D 1

n

X
P.�/li D 1:598

3
D 0:5333 code symb/src symb

� The symbol rate at the encoder output is

r
NL
n
D 3:5.0:5333/ D 1:864 code symb/s

< S D 2 chan symb/s

so transmission is now possible!

� In general NL=n exceeds the source entropy, but approaches it
as n becomes large

NL=n in example as n steps from one to three
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7.4. COMMUNICATIONS IN NOISY ENVIRONMENTS

7.3.1 Shannon-Fano Source Coding

See Z&T page 632.

7.3.2 Huffman Source Coding

See Z&T page 632–634 .

7.4 Communications in Noisy Environ-
ments

� We now take the first steps towards channel coding

� The Shannon fundamental theorem of information theory states
that:

Given a discrete memoryless source (each symbol
perturbed by noise independently of all other sym-
bols) with capacity C and a source with positive rate
R, where R < C , there exists a code such that
the output of the source can be transmitted over the
channel with an arbitrary small probability of error .

Shannon-Hartley Law

� The AWGN channel has capacity in bits/s given by

Cc D B log2

�
1C S

N

�

whereB is the channel bandwidth in Hz and S=N is the signal-
to-noise power ratio
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� With Cc a trade-off between channel bandwidth and SNR is
established

� We now investigate what happens to the capacity when we try
to make the bandwidth very large

� We know that Eb D STb (recall S is signal power) and at
capacity the bit rate Rb D 1=Tb D Cc bits/s, so

Eb D STb D S

Cc

� The noise power in bandwidth B is

N D N0B
so

S

N
D Eb

N0
� Cc
B

� Rewriting the Shannon-Hartley law we have

Cc

B
D log2

�
1C Eb

N0
� Cc
B

�

� Solving for Eb=N0 we have

Eb

N0
D B

Cc

�
2Cc=B � 1�

� We now consider B � Cc using the expansion ex ' 1 C
x; jxj � 1:

2Cc=B D e.Cc=B/ ln 2 ' 1C Cc
B

ln 2
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7.4. COMMUNICATIONS IN NOISY ENVIRONMENTS

� Under the B � Cc assumption we then have

Eb

N0
' B

Cc

�
1C Cc

B
ln 2 � 1

�
D ln 2 D �1:6 dB

� We conclude that in an ideal system, where Rb D Cc, the lim-
iting value for Eb=N0, as B grows without bound, is -1.6 dB

� The plot below shows this relationship along with regions where
Rb < Cc exist as we plot Eb=N0 versus Rb=B

Asymptote D �1:6 dB

AWGN channel capacity

� Above and to the left of the curve is where realizable systems
must operate, in particular for Rb=B large Eb=N0 is also large

� For Rb < Cc and B � Rb, we need Eb=N0 just greater than
-1.6 dB, i.e., S ' Rb.ln 2/N0 W

ECE 5630 Communication Systems II 7-13



CHAPTER 7. INFORMATION THEORY AND CODING

� Another way of plotting this function is found in Sklar1, where
it is referred to as the power-bandwidth efficiency plane

-2.0

Power-bandwidth efficiency plane

� Comparisons between MPSK, MQAM, and MFSK are also
provided

1B. Sklar, Digital Communications: Fundamentals and Applications, second edition, Prentice
Hall, New Jersey, 2001.
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7.5. FORWARD ERROR CORRECTION CODING

7.5 Forward Error Correction Coding

� How do we move closer to Shannon’s limit as seen in the two
previous figures?

� One approach is through the design of the modulation scheme
itself

� Another approach, and one of the main topics of this chapter,
is via forward error correction (FEC) code design

� Coding can be used to combat the effects of channel noise

� Two fundamental classes of codes for FEC are block and con-
volutional codes

7.5.1 Block Codes

� With block coding the serial source symbols are grouped into
k-symbol blocks and then n� k check symbols, to make code
words of length n > k; the code is denoted .n; k/

1 k

k symb. 
source block

1 k n � k

n symb. 
channel block

1 k n � k. . .

1 k

Code Rate D k

n
; n > k

Input 
Source 

Bits

Output 
Channel 

Bits

check symbols
. . . . . .
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� The check symbols allow for correction or at least detection of
errors

� The desire is to achieve the desired error correcting with code
rate as close to one as possible

Hamming Distances and Error Correction

� We can view error correction/detection from a geometric point
of view

� Consider a code word composed of n bits, 1s and 0s

� The Hamming distance, dij , between two such code words si
and sj is defined as the number of positions in which si and sj
differ

dij D w.si ˚ sj /;
where ˚ denotes modulo-2 addition (XOR) and w. / is the
Hamming weight, which counts the number of 1s of the code
word in its argument

� The geometric view tells us that if two code words are distance
5 apart, a minimum-distance decoder can correct as many as

e D
�
dm � 1
2

�
errors;

where dm is the minimum distance between two code words
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7.5. FORWARD ERROR CORRECTION CODING

dm D 5) e D 2

Up to 2 errors can be corrected

Geometric view of two code words and the impact of errors

Single-Parity Check Codes

� A very simple block code that can only detect errors, is when
one check symbol is added to the k information symbols to
form a k C 1 length block, thus the code rate D k=.k C 1/

� The added symbol is a parity-check symbol which is used to
make the code word Hamming distance either even or odd

� If the word contains an even number of errors error detection
will not occur, but for an odd number of errors (in particular a
single error), we know the word contains an error

Repetition Codes

� Another very simple block code, that is capable of correcting
errors, is the repetition code where each symbol is repeated n
times

� Hence we have n � 1 check symbols making

code rate D 1

n
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� For n D 3 one error can be corrected (e D .3 � 1/=2 D 1)

Repetition code example

� The BEP with this code is

Pb D
nX

iDeC1

 
n

i

!
pi.1 � p/n�i ;

where p is the BSC channel error probability

� The information rate increase (Rc D nRs) associated with the
repetition code, makes its use limited

– When the uncoded PE D p is exponential with Eb=N0
we cannot overcome the bandwidth expansion

– When PE is algebraic (think Rayleigh fading), the repeti-
tion is effective, i.e., like diversity combining
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Parity Check for Single Errors

� Practical codes for digital communication try to strike a bal-
ance between error correction and maintaining a high informa-
tion rate (code rate close to one)

� One simple code that does this is the single error correction
parity-check codes

� To each k-symbol block we add r D n � k parity check sym-
bols

a1 a2 � � � ak„ ƒ‚ …
source symb..

c1 c2 � � � cr„ ƒ‚ …
parity check symb.

� Choose the r D n � k check symbols such that

0 D h11a1 ˚ h12a2 ˚ � � � ˚ h1kak ˚ c1
0 D h21a1 ˚ h22a2 ˚ � � � ˚ h2kak ˚ c2
::: ::: :::

0 D hr1a1 ˚ hr2a2 ˚ � � � ˚ hrkak ˚ cr
or

HT D �H ��T � D �0� D 0

where H is the parity check matrix

H D

2
6664

h11 h12 � � � h1k 1 0 � � � 0
h21 h22 � � � h2k 0 1 � � � 0
::: ::: : : : ::: ::: ::: : : : :::

hr1 hr2 � � � hrk 0 0 � � � 1

3
7775

and T is the code word vector

T D �a1 a2 � � � ak c1 � � � cr
�T
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� In place of vector T, suppose R D �
R
�

is a received sequence
(vector) of length n

HR ¤ 0) at least one error is present

� To decode R and correct the error, we start by writing

R D T˚ E;

where E is a length n error pattern induced by the channel

� We need to determine E from R using H

� Let
S D �S� D HR D HT˚HE D HE;

since HT D 0

� The matrix/vector S is known as the syndrome

� We observe that HE, for the case of a single error, returns

E D

2
66666664

0

0
:::

1
:::

0

3
77777775

and the i th column of H (i th row of E) is where the error occurs
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7.5. FORWARD ERROR CORRECTION CODING

Example 7.1: A (6, 3) Code

� Given

H D
2
4
1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

3
5

� Assume that we receive 111011

� The syndrome is

S D HR

D
2
4
1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

3
5

2
66666664

1

1

1

0

1

1

3
77777775
D
2
4
0

1

1

3
5

� The syndrome is column 3 of the parity check matrix, so the er-
ror is in the third symbol, meaning the decoded word is 110011

� The syndrome of 110011 is 0, as expected

Hamming Codes

� The Hamming .n; k/ code was discovered by Richard Ham-
ming in 1950

� For positive integer m � 3 we have
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Code word length n D 2m � 1
Message block k D 2m � 1 �m
Parity-check block n � k D m
Error correcting capability e D t D 1
Minimum Hamming distance dm D 3

� The parity check matrix is of dimension 2n�k � 1 by n � k
� The i th column of the matrix H is made the binary represen-

tation of i , making the syndrome for a single error the binary
representation of the position in error

Example 7.2: A (7, 4) Code

� Given

H D
2
4
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

3
5

� Assume that we receive 1110001

� The syndrome is

S D HR

D
2
4
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

3
5

2
6666666664

1

1

1

0

0

0

1

3
7777777775

D
2
4
1

1

1

3
5
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7.5. FORWARD ERROR CORRECTION CODING

� The error is thus in position 7 as .111/b D 7, so the decoded
word is 1110000

� Note that the parity checks are in columns 1, 2, and 4, as these
columns contains a single 1 each

Cyclic Block Codes

� A linear block code is a cyclic code if a cyclic shift of any code
word produces another valid code word, e.g.,

x1x2 � � � xn�1xn and xnx1 � � � xn�2xn�1

� The motivation here is encoder and decoder implementation
ease
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� An .n; k/ cyclic code can be easily generated using an n � k
stage shift register with feedback

– Position A: Shift k D 4 information bits into the decoder
(position A)

– Position B: Shift out remaining n�k bits, the register also
zeros at the end of this operation, ready to load a new set
of information bits

Cyclic block code generation
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� The decoder is a bit more complicated, but still easy to imple-
ment

Cyclic .7; 4/ code decoding
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� Examples of popular cyclic codes include:

– Golay: e D 3,

– Bose-Chaudhuri-Hocquenghem (BCH): e < 2m�1, m �
3,

– Reed Solomon (RS): non-binary with each symbol carry-
ing 2m bits, n D 2m � 1, parity block n � k D 2e

� The RS code is good at dealing with burst errors and is part of
the playback standard for compact disk digital audio

Performance Comparison

� The performance of all block codes revolves around qu and qc,
the uncoded and coded symbol error probabilities, respectively

� We are also interested in Peu and Pec, the uncoded and coded
word error probabilities, respectively

� Assuming independent errors,

Peu D 1 � .1 � qu/k

� If a code can correct up to e errors, then

Pec D
nX

iDeC1

 
n

i

!
.1 � qc/n�iqic

� For perfect codes (Hamming codes and Golay (23,12)) the
above expression for Pec is exact

7-26 ECE 5630 Communication Systems II
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� In general it is possible that for certain error sequences, in
which more than e errors occur, they may also be corrected

� The above Pec expression still forms a tight bound in most
cases

� Word error probabilities are only useful when n-symbol words
carry and equal number of information bits

� In Z&T the Torrieri2 BEP bounds for block codes is discussed,
in particular the expression

Pb D q

2.q � 1/

"
dX

iDeC1

d

n

 
n

i

!
P i
s .1 � Ps/n�i

C 1

n

nX

iDdC1
i

 
n

i

!
P i
s .1 � Ps/n�i

#

where Ps is the channel symbol error probability (qu for the
binary case or just p for the BSC), e the number of correctable
errors, d D 2eC 1, q is the code alphabet size (q D m D 2 in
the binary case, 2m for RS codes)

� Finding the exact BEP can be difficult

2D.J. Torierri, Principles of Secure Communication Systems second edition, Artech House,
1992
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Example 7.3: Golay and Hamming Code Example

� Compare the performance of a (15,11) Hamming code with a
(23,12) Golay code, and an uncoded system, all in AWGN

� The Hamming code can correct just one error, while the Golay
code can correct up to 3 errors

� The Torrieri expressions are used to compute the BEP

� See Z&T p. 656 for the MATLAB code (convert to Python easy)

2.13 dB

1.17 dB

(15,11) Hamming and (23,12) Golay code BEP performance
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7.5.2 Convolutional Codes

� Convolutional codes are generated with a constriant span, k D
K, in place of the block length and parity symbols

� For each new information symbol multiple code symbols are
produced at the output via a commutator

General convolutional coder

� With v outputs for every input, the code rate becomes 1=v

– Rate k=v convolutional codes are also possible, and there
is also a technique known as puncturing which removes
selected output symbols

� Consider a rate 1/3 constraint length 3 coder

v1 = S1⊕ S2 ⊕ S3 v2 = S1 v3 = S1⊕ S2

Rate 1/3 constraint length K D 3 coder
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� To decode convolutional codes the Viterbi algorithm (VA) is
most often employed

� The encoder introduces memory into the output sequence that
can be traced using a code tree, but the tree continues to grow
in size (2N branches,N binary input symbols) as the traceback
distance increases

Input bit (symbol)

Output bits

Input Seq: 1010
Output Seq: 111 101 011 101
for zero initial initial states

Rate 1/3 constraint length K D 3 code tree
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� The use of a trellis structure, which is part of the VA, makes
the decoding process manageable

� To understand the VA we first consider the state as .S1; S2/ and
consider what happens when a new bit enters the encoder

Rate 1/2 constraint length K D 3 states and state transitions

ECE 5630 Communication Systems II 7-31



CHAPTER 7. INFORMATION THEORY AND CODING

� The present value of .S2; S3/ (or previous .S1; S2/) along with
the current input bit S1, completely describes the behavior of
the encoder and can be used to set up the VA trellis used for
decoding

� Using the above tables, we now construct the trellis

00

01

10

11

input '0'
input '1'

Rate 1/3 constraint length K D 3 trellis

� The VA uses the trellis by searching backwards to find the most
likely path that was used to arrive at the current state

� The traceback process, uses metrics formed according to the
minimum Hamming distance between the received symbols
and a given trellis path
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� By keeping as a survivor the minimum Hamming distance path
to each of the present states, the traceback paths in theory all
come from a common path through the trellis, which in turn
corresponds to the input bit sequence

� Divergence from the correct path occurs when errors cannot be
corrected, but due to the periodicity of the trellis only make for
a finite run of decoded errors (e.g., K D 3 in this case)
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Performance Comparisons

� The BEP performance of a convolutional code can be approx-
imated using the weight structure/spectrum bound3

� The Z&T text provides MATLAB code for calculating this bound

Pb <

1X

kDdfree

ckPk;

where dfree is the free distance of the code, the Hamming weight
of the minimum length error event path, Pk is the probability
of an error event path of length k occurring, and ck is weight
that gives the number of bit errors associated with the error
event path (the ck’s are found in a table)

� The Pk’s are calculated as follows

Pk D

8
ˆ̂̂
<
ˆ̂̂
:

Pk
eD.k=2/C1

n�
k

e

�
pe.1 � p/k�e

C1
2

�
k

k=2

�
pk=2.1 � p/k=2

o
; k D even

Pk
eD.kC1/=2

�
k

e

�
pe.1 � p/k�e; k D odd

� Finally, for the AWGN channel (BPSK in this case)

p D Q
 s

2kREb

N0

!

where R is the code rate

� Tables of the weights can be found in Ziemer & Peterson
3R. Zeimer and R. Peterson, Introduction to Digital Communications, second edition, Prentice

Hall, New Jersey, 2001
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Example 7.4: Rate 1/2 and 1/3 Codes, K a Parmeter

3.5 dB

4 dB

Code performance of rate 1/2 and 1/3 codes
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7.5.3 Low Density Parity Check (LDPC) Codes

� An LDPC code is a linear block code having parity check ma-
trix H which is sparse

� These codes were originally discovered in 19624, but were re-
discovered by MacKay and Neal in 19965

� The significance of these codes is that using long LDPC codes
we can approach the Shannon limit to within a few tenths of a
dB!

� LDPC codes also offer both better performance and lower de-
coding complexity than other codes6

� Regular LDPC codes have a block length of n, a parity check
matrix that has exactly wr ones in each row and exactly wc
ones in each column, where wc < wr < n (there are also
irregular LDPC codes)

� The rows of H do not have to be linearly independent

� The code dimension is controlled by the rank of H

� Sparseness of H makes a code more efficient to decode

4R. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, pp. 21-28,
January 1962.

5D. J. C. MacKay and R. M. Neal, “Near Shannon-Limit Performance of Low-Density Parity-
Check Codes,” Electronics Letters, vol. 32, pp. 1645–1646, Aug. 1996.

6J. Barry, E. Lee, and D. Messerschmitt, Digital Communications, third edition, Kluwer Aca-
demic Publishers, 2004.
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� As an example parity check matrix of a regular (12, 6) code is7

H D

2
66666664

1 1 1 0 0 1 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 1 1 1

1 0 0 1 0 0 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 0

0 0 1 1 0 1 1 0 0 1 1 1

3
77777775

� Decoding LDPC codes is accomplished using message passing
algorithms (MPA)

� The algorithms are iterative, but not difficult to implement in
practice, hence the popularity

7.5.4 Trellis-Coded Modulation (TCM)

Combined coding and modulation to achieve both bandwidth and
power efficiency gains. See Z&T pages 668-672.

A practical example taken from SATCOM is combining a rate
1/2 convolutional code with an 8-PSK modulator. The comparison
system is QPSK.

� With QPSK we have two bits per symbol

� With 8-PSK TCM the first bit is encoded rate 1/2 to two code
bits

� The second bit is sent as the third 8-PSK bit making the symbol
complete

7T. Ha, Theory and Design of Digital Communication Systems, Cambridge University Press,
London, 2011.

ECE 5630 Communication Systems II 7-37



CHAPTER 7. INFORMATION THEORY AND CODING

� The effective code rate is now R D 2=3

� The asymptotic coding gain over QPSK is 3 dB with no change
in bandwidth required

� Very simple decoding is also possible, which gives less coding
gain, but requires only a simple 4-state Viterbi algorithm

� The coder and trellis structure found in Z&T are shown below

12.6 Bandwidth and Power Efficient Modulation (TCM) 669
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Figure 12.31
(a) Convolutional coder and (b) trellis
diagram corresponding to a 4-state,
8-PSK TCM.

that same data rate with the TCM system by employing an 8-PSK modulator, which carries
3 bits per signal phase, in conjunction with a convolutional coder that produces three encoded
symbols for every two input data bits, i.e., a rate 2

3 coder. Figure 12.31(a) shows an coder for
accomplishing this, and Figure 12.31(b) shows the corresponding trellis diagram. The coder
operates by taking the first data bit as the input to a rate 1

2 convolutional coder that produces
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that same data rate with the TCM system by employing an 8-PSK modulator, which carries
3 bits per signal phase, in conjunction with a convolutional coder that produces three encoded
symbols for every two input data bits, i.e., a rate 2

3 coder. Figure 12.31(a) shows an coder for
accomplishing this, and Figure 12.31(b) shows the corresponding trellis diagram. The coder
operates by taking the first data bit as the input to a rate 1

2 convolutional coder that produces

8-PSK TCM: (a) coder, (b) trellis.

� The error probability of scheme in AWGN is compared with
QPSK below:
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12.6 Bandwidth and Power Efficient Modulation (TCM) 671

branch being decoded. The second decoded bit of the pair is the same as the third symbol !3
of that branch word, since !3 is the same as the uncoded bit "2.

Ungerboeck has characterized the event error probability performance of a signaling
method in terms of the free distance of the signal set. For high SNRs, the probability of
an error event (i.e., the probability that at any given time the VA makes a wrong decision
among the signals associated with parallel transitions, or starts to make a sequence of wrong
decisions along some path diverging from more than one transition from the correct path) is
well approximated by

# (error event) = $free%
(
&free
2'

)
(12.145)

where$free denotes the number of nearest-neighbor signal sequences with distance &free that
diverge at any state from a transmitted signal sequence, and reemerge with it after one or
more transitions. (The free distance is often calculated by assuming the signal energy has been
normalized to unity and that the noise standard deviation ' accounts for this normalization.)

For uncoded QPSK, we have &free = 21∕2 and $free = 2 (there are two adjacent sig-
nal points at distance &free = 21∕2), whereas for 4-state-coded 8-PSK we have &free = 2 and
$free = 1. Ignoring the factor $free, we have an asymptotic gain due to TCM over uncoded
QPSK of 22∕(21∕2)2 = 2 = 3 dB. Figure 12.33, also from Ungerboeck, compares the asymp-
totic lower bound for the error event probability with simulation results.
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Figure 12.33
Performance for a 4-state, 8-PSK TCM
signaling scheme. (From G. Ungerboeck,
‘‘Trellis-Coded Modulation with
Redundant Signal Set, Part l:
Introduction,’’ IEEE Communications
Magazine, February 1987, Vol. 25,
pp. 5--11.)

Performance for a 4-state, 8-PSK TCM signaling scheme. (From G.
Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Set, Part l:
Introduction,” IEEE Communications 10–2 Magazine, February 1987, Vol.

25, pp. 5–11.)

7.5.5 Turbo Codes

See Z&T pages 681-683.
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7.5.6 MATLAB Support for FEC Coding

biterr Compute number of bit errors and bit error rate (BER)
commmeasure.ACPR Create adjacent channel power measurement object
commmeasure.EVM Create EVM measurement object
commmeasure.MER Create MER measurement object
commscope Package of communications scope classes
commscope.eyediagram Eye diagram analysis
commscope.ScatterPlot Create Scatter Plot scope
commtest.ErrorRate Create error rate test console
distspec Compute distance spectrum of convolutional code
eyediagram Generate eye diagram
EyeScope Launch eye diagram scope for eye diagram object H
noisebw Equivalent noise bandwidth of filter
scatterplot Generate scatter plot
semianalytic Calculate bit error rate (BER) using semianalytic technique
symerr Compute number of symbol errors and symbol error rate

 Back to Top

Source Coding

arithdeco Decode binary code using arithmetic decoding
arithenco Encode sequence of symbols using arithmetic coding
compand Source code mu-law or A-law compressor or expander
dpcmdeco Decode using differential pulse code modulation
dpcmenco Encode using differential pulse code modulation
dpcmopt Optimize differential pulse code modulation parameters
huffmandeco Huffman decoder
huffmandict Generate Huffman code dictionary for source with known probability model
huffmanenco Huffman encoder
lloyds Optimize quantization parameters using Lloyd algorithm
quantiz Produce quantization index and quantized output value

 Back to Top

Error-Control Coding

bchdec BCH decoder
bchenc BCH encoder
bchgenpoly Generator polynomial of BCH code
bchnumerr Number of correctable errors for BCH code
convenc Convolutionally encode binary data
cyclgen Produce parity-check and generator matrices for cyclic code
cyclpoly Produce generator polynomials for cyclic code
decode Block decoder
dvbs2ldpc Low-density parity-check codes from DVB-S.2 standard
encode Block encoder
fec.bchdec Construct BCH decoder object
fec.bchenc Construct BCH encoder object
fec.ldpcdec Construct LDPC decoder object
fec.ldpcenc Construct LDPC encoder object
fec.rsdec Construct Reed-Solomon decoder object
fec.rsenc Construct Reed-Solomon encoder object
gen2par Convert between parity-check and generator matrices
gfweight Calculate minimum distance of linear block code
hammgen Produce parity-check and generator matrices for Hamming code
rsdec Reed-Solomon decoder
rsdecof Decode ASCII file encoded using Reed-Solomon code
rsenc Reed-Solomon encoder
rsencof Encode ASCII file using Reed-Solomon code
rsgenpoly Generator polynomial of Reed-Solomon code
syndtable Produce syndrome decoding table
vitdec Convolutionally decode binary data using Viterbi algorithm

 Back to Top

Interleaving/Deinterleaving

algdeintrlv Restore ordering of symbols using algebraically derived permutation table
algintrlv Reorder symbols using algebraically derived permutation table
convdeintrlv Restore ordering of symbols using shift registers
convintrlv Permute symbols using shift registers
deintrlv Restore ordering of symbols
heldeintrlv Restore ordering of symbols permuted using helintrlv

helintrlv Permute symbols using helical array
helscandeintrlv Restore ordering of symbols in helical pattern
helscanintrlv Reorder symbols in helical pattern
intrlv Reorder sequence of symbols
matdeintrlv Restore ordering of symbols by filling matrix by columns and emptying it by rows
matintrlv Reorder symbols by filling matrix by rows and emptying it by columns
muxdeintrlv Restore ordering of symbols using specified shift registers
muxintrlv Permute symbols using shift registers with specified delays
randdeintrlv Restore ordering of symbols using random permutation
randintrlv Reorder symbols using random permutation

 Back to Top

Analog Modulation/Demodulation

amdemod Amplitude demodulation
ammod Amplitude modulation
fmdemod Frequency demodulation
fmmod Frequency modulation
pmdemod Phase demodulation
pmmod Phase modulation
ssbdemod Single sideband amplitude demodulation
ssbmod Single sideband amplitude modulation

 Back to Top

MATLAB Comm toolbox ™FEC coding functions
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Example 7.5: Rate 1/2K D 7Convolutional Code Simulation

+

+

S1 S2 S3 S4 S5 S6

Input

Output

S7

poly:
1011011

poly:
1111001

Rate 1/2 K D 7 Coder

� To set up the encoder we need to first build the trellis using
poly2trellis()

� This function takes as its input octal words describing the con-
nections in the block diagram

function [Pe,errors,N_RecBits] = convCoder_test(SNRdB,NminErrors)
% [Pe,errors,N_RecBits] = convCoder_test(SNR,Nerrors)
%
% Mark Wickert December 2010

% Convert uncoded SNR = Eb/N0 to channel Eb/N0
% Since the code is rate 1/2 the factor is 3 dB
SNR = SNRdB - 10*log10(2);

%Create a Rate 1/2 conv encoder with K = 7 and code generators
% G1 = 1111001, G2 = 1011011.
% Create in octal form for poly2trellis function
K = 7;
G1_b = ’1111001’;
G2_b = ’1011011’;
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G1_o = str2num(dec2base(bin2dec(G1_b),8));
G2_o = str2num(dec2base(bin2dec(G2_b),8));
% Create the trellis structure
trellis = poly2trellis(K,[G1_o G2_o]);
% Initialize error counters
errors = 0;
N_RecBits = 0;
while errors < NminErrors

% Create a sample input message
N = 2000000;
msg = randi([0,1],1,N);
% Encode msg
code_bits = convenc(msg,trellis);
% Baseband BPSK
code_bits = 2*code_bits - 1;
% Add noise
%SNR = 0
code_bits = real(cpx_AWGN(code_bits,SNR,1));
% Make hard decisions
code_bits = sign(code_bits);
% Convert -1/+1 logic to 0/1 logic
code_bits = (code_bits+1)/2;
% Decode using hard (Hamming weight metrics)-decision Viterbi, and a
% traceback depth of 42 bits.
TRACEBACK = 42;
decoded = vitdec(code_bits,trellis,TRACEBACK,’cont’,’hard’);
% Error detect
errors = errors + sum(xor(msg(1:end-42), decoded(42+1:end)));
N_RecBits = N_RecBits + length(msg(1:end-42));

end

Pe = errors/N_RecBits;
my_label = sprintf(’SNR = %2.2f, errors = %d, BEP = %2.2e’,...

SNRdB,errors,Pe);
disp(my_label);

� Collect BEP simulation data:

>> [Pe,errors,N_RecBits] = convCoder_test(0,2500);
SNR = 0.00, errors = 744413, BEP = 3.72e-01
>> [Pe,errors,N_RecBits] = convCoder_test(1,2500);
SNR = 1.00, errors = 508620, BEP = 2.54e-01
>> [Pe,errors,N_RecBits] = convCoder_test(2,2500);
SNR = 2.00, errors = 237292, BEP = 1.19e-01
>> [Pe,errors,N_RecBits] = convCoder_test(3,2500);
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SNR = 3.00, errors = 64808, BEP = 3.24e-02
>> [Pe,errors,N_RecBits] = convCoder_test(4,100);
SNR = 4.00, errors = 10805, BEP = 5.40e-03
>> [Pe,errors,N_RecBits] = convCoder_test(5,500);
SNR = 5.00, errors = 1008, BEP = 5.04e-04
>> [Pe,errors,N_RecBits] = convCoder_test(6,500);
SNR = 6.00, errors = 509, BEP = 3.64e-05
>> [Pe,errors,N_RecBits] = convCoder_test(7,250);
SNR = 7.00, errors = 254, BEP = 1.74e-06
>> % Obtain the bounding results and uncoded
>> % Uncoded (last parameter == 2)
>> Pb = conv_Pb_bound(1/2,10,[36 0 211 0 1404 0 11633 0],SNRdB,2);
>> % Coded hard decision (last parameter == 0)
>> Pb_h = conv_Pb_bound(1/2,10,[36 0 211 0 1404 0 11633 0],SNRdB,0);
>> % Coded soft decision (last parameter == 1)
>> Pb_s = conv_Pb_bound(1/2,10,[36 0 211 0 1404 0 11633 0],SNRdB,1);

� The results are plotted in the figure below

0 2 4 6 8 10 12
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Eb/N0  dB

Pr
ob

ab
ilit

y 
of

 B
it 

Er
ro

r

Uncoded

Coded
(weight structure 
upper bound)

Coded
(simulation)

BEP results, uncoded, coded upper bound, and simulation

ECE 5630 Communication Systems II 7-43



CHAPTER 7. INFORMATION THEORY AND CODING

� MATLAB code for the error bounding formulas is listed below

function Pb = conv_Pb_bound(R,dfree,Ck,SNRdB,hard_soft)
% Pb = conv_Pb_bound(R,dfree,Ck,SNR,hard_soft)
%
% Convolution coding bit error probability upper bound
% according to Ziemer & Peterson 7-16, p. 507
%
% Mark Wickert July 2001

Pb = zeros(1,length(SNRdB));
SNR = 10.^(SNRdB/10);

for n=1:length(SNR)
for k=dfree:(length(Ck)+dfree-1)

if hard_soft == 0 % Evaluate hard decision bound
Pb(n) = Pb(n) + Ck(k-dfree+1)*hard_Pk(k,R,SNR(n));

else % Evaluate soft decision bound
Pb(n) = Pb(n) + Ck(k-dfree+1)*soft_Pk(k,R,SNR(n));

end
end
if hard_soft == 2 % Compute Uncoded Pe

Pb(n) = gaussQ(sqrt(2*SNR(n)));
end

end

function Pk = hard_Pk(k,R,SNR)
% Pk = hard_Pk(k,R,SNR)
%
% Calculates Pk as found in Ziemer & Peterson eq. 7-12, p.505
%
% Mark Wickert July 2001

p = gaussQ(sqrt(2*R*SNR));
Pk = 0;

if 2*fix(k/2) == k
for e=k/2+1:k

Pk = Pk + ...
factorial(k)/(factorial(e)*factorial(k-e))*p^e*(1-p)^(k-e);

end
Pk = Pk + ...

1/2*factorial(k)/(factorial(k/2)*factorial(k-k/2))*p^(k/2)*(1-p)^(k/2);
else

for e=(k+1)/2:k
Pk = Pk + ...
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factorial(k)/(factorial(e)*factorial(k-e))*p^e*(1-p)^(k-e);
end

end

function Pk = soft_Pk(k,R,SNR)
% Pk = soft_Pk(k,R,SNR)
%
% Calculates Pk as found in Ziemer & Peterson eq. 7-13, p.505
%
% Mark Wickert July 2001

Pk = gaussQ(sqrt(2*k*R*SNR));

function p = gaussQ(x)

p = 1/2*erfc(x/sqrt(2));

Note: The above MATLAB example can also be run using the Python
module fec_conv.py in scikit-dsp-comm. Functions for calculat-
ing the soft decision coding bounds are also included. See the final
project Fall 2021, Problem 4, for more details.

Note: Block coding FEC can also be explored in scikit-dsp-comm
using the module fec_block.py. An example notebook can be
found on read-the-docs.
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