
Lab 5  

Introduction  

The underlying theme of this lab is angle modulation, in particular frequency modulation (FM). The 
details of both modulation and demodulation are investigated. Particular emphasis will be placed on 
the modulation process using a voltage controlled oscillator. The spectrum of an FM signal will also 
be examined. The use of the quadrature detector and/or the phase-locked loop for FM 
demodulation is also considered.

Voltage Controlled Oscillator and FM Frequency Deviation
Constant

 

Studying a voltage controlled oscillator (VCO) is a good way to get introduced to frequency 
modulation concepts. A VCO block diagram representing a single channel of the 33600A is shown 
in Figure 1.

Figure 1: VCO block diagram with a separate input to set the carrier quiescent frequency broken out.

In this figure the traditional VCO model is changed from a single control voltage input consisting of 
a fixed bias voltage to set the center frequency  plus a time varying bias, to be two inputs, a 
modulation input  and a center frequency input . As you work through this lab at times 
Channel 1 will be the VCO and at other times Channel 2 will be the VCO.

When the instantaneous frequency of a sinusoidal carrier waveform is proportional to a message, 
, it can be expressed as

where  is the carrier frequency,  is the modulating signal, and  is the frequency deviation 
constant with units of Hz/volt.

Since frequency is the time derivative of phase, or instantaneous phase is the integral of 
instantaneous frequency, the FM waveform can be expressed as
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When  constant, the instantaneous frequency becomes

In summary, a dc voltage produces a frequency that is offset from the carrier frequency by 
Hz.

Laboratory Exercises  

In this first exercise you will characterize Channel 2 of the Keysight 33600A as a VCO. Configure 
Channel 1 of the 33600A as a variable voltage source to serve as an input to Channel 2. Note a 
bench power supply could also be used for this purpose, but the fact that one of the waveforms 
produced by the 33600A is DC is very convenient. Figure 2 depicts the setup with Channel 1 first 
set to produce a variable DC waveform. Second, Channel 2 is setup to produce a 50 MHz sinusoid 
at -15 dBm. It becomes a VCO by setting the generator for FM modulation using external 
modulation via the rear panel connector.  On the front panel of the 33600A set the modulation 
mode (Mod button) to FM and then set Freq Dev = 5 MHz and finally configure Source External as 
Mod In = 5V. When in external FM mode the deviation value is no longer the peak deviation, instead 
it is a combination of Freq Dev, Mod IN, and the amplitude of external input voltage that controls 
the deviation of the Channel 2 source. The applied voltage moves the frequency of the source 
above and below the nominal center frequency of 50 MHz.  Reference all data that you take in the 
lab to the rear panel input, hereafter referred to as .
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Figure 2: Configuring Channel 2 of the Keysight 33600A as a VCO and using Channel 1 as an 
adjustable DC source to then obtain the a VCO tuning curve.

In Figure 2 I also show the scope attached to  so you can check the DC voltage and later the 
signal applied to the VCO input. Note for the DC measurements you may want to use the bench 
DVM to measure the control voltage. To make the voltage display on Channel 1 of the 33600A be 
sure to set the output load to HiZ.  

Enter the frequency versus voltage data you collect into a Python list for plotting in the Jupyter 
Notebook Sample. The applied voltage range of interest is  volts as applied at the 

 input, with the carrier center frequency is set to MHz. Take data points about 0.25 volts 
apart. Clearly establish that you have a linear plot.. With the data in the Jupyter notebook you can 
easily fit a line to the data using polyfit()  and polyval() , create a plot of the frequency (use 
the Keysight N9914A spectrum analyzer marker) versus voltage and the slope on Hz/V or MHz/V. A 
Python sample using simulated measurement data is contained in the sample notebook and 
repeated below: 
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The polynomial fit to the data is held in the array p , which is a first degree polynomial relating to 
the model

v_sim = arange(-2,2+.25,.25) # in Volts
f_sim = 50+v_sim*3 + 0.1*randn(len(v_sim)) # in MHz

1
2

v_sim1

array([-2.  , -1.75, -1.5 , -1.25, -1.  , -0.75, -0.5 , -0.25,  0.  ,
        0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])

1
2

f_sim1

array([44.14764527, 44.83113494, 45.45664035, 46.2873477 , 47.04520317,
       47.62064896, 48.45482124, 49.22576942, 50.10098242, 50.56772122,
       51.49870311, 52.42327137, 52.94645917, 53.70339293, 54.5731309 ,
       55.23217258, 55.90645751])

1
2
3
4

# Save data in the Python lists:
#v_data = [-2.0, -1.75, -1.5, -1.25, ...] # voltage data in Volts
#f_data = [44.147, 44.831, 45.457, ...] # Frequency data in MHz
# Here we load the simulated data from above as a placeholder
v_data = v_sim
f_data = f_sim
p = polyfit(v_data,f_data,1)
f_data_fit = polyval(p,v_data)
print('Slope = %4.2f MHz/V, Offset = %4.2f MHz' % (p[0],p[1]))

1
2
3
4
5
6
7
8
9

Slope = 2.98 MHz/V, Offset = 50.00 MHz1
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Figure 3: Sample VCO frequency versus voltage curve fit from simulated measurement data.

Note: When the Keysight 33600A is configured as a VCO, it will have essentially a perfect or linear 
tuning curve. The theoretical values of  and  are formed from the generator parameters Freq 
Dev , Mod In  value 1V or 5V, and the center frequency fc . Can you deduce the theoretical 
expression?

FM Modulation Index -  

If we let  in the earlier equation given for , then

plot(v_data,f_data,'r.')
plot(v_data,f_data_fit)
xlabel(r'VCO Input Voltage (V)')
ylabel(r'VCO Output Frequency (MHz)')
title(r'VCO Tuning Curve with $f_d = 2.9814$ MHz/V, $f_c = 50$ MHz')
legend((r'Raw Data',r'Fit: $f = v_{in}\cdot f_d + f_c$'))
grid();

1
2
3
4
5
6
7
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In the above equation,  is referred to as the modulation index. It is an important 
parameter for characterizing the FM signal. Note that  increases with increasing amplitude of the 
modulating signal, and decreases with increasing frequency, .

The equations given here represent sinusoidal frequency modulation, or tone modulation with 
frequency . The equation is periodic and has a Fourier series. The series is rather complicated, 
however, and has coefficients which are functions of  instead of being fixed constants as in the 
case, for example, of a square wave. The Fourier series representation of sinusoidal frequency 
modulation is given by

This equation shows that for tone modulation the spectrum consists, theoretically at least, of 
sidebands spaced  apart out to infinite frequency. The function  is called the -th order 
Bessel function, of the first kind, with argument . The Bessel functions are graphed and tabulated 
in most math handbooks, and the value of the function for any given argument, , can easily be 
found.

For  and all of the remaining coefficients are zero. This says that the only term 
present in the series in the unmodulated case is the carrier frequency, as it should be. For  very 
small the first pair of sidebands will come and go according to the value of their corresponding 
coefficients in the equation above.

Laboratory Exercises  

1. Connect the output of the Keysight 33600A function generator Channel 2 to the Keysight 
N9914A spectrum analyzer. Continue to use a carrier frequency of  MHz and center the 
carrier signal on the analyzer screen. Set the frequency span to about 200 kHz. The general 
setup is shown in Figure 4 as a continuation of Figure 2.
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Figure 4: Sinusoidal FM using the combination of the 33600A  Channel 2 as a VCO and the 33600A 
Channel 1 as a modulation source.

2. Set the  input to Channel 2 to a frequency of 10 kHz. Start with the modulating signal at 
zero amplitude and slowly increase the level. Watch the Channel 1 output on a scope to 
observe the  waveform and also observe the frequency spectrum of the Channel 2 output. 
As the input level is increased, one pair of sidebands and then a second and a third pair will 
appear. Reduce the input until only the first pair is present. On a dB scale we will call this the 
10% point or the when the second pair of sidebands is down 20dB relative to the first pair. 
Take data to calculate the value of  at this point. The condition where only one sideband of 
the modulating frequencies is present is known as narrow-band FM. The maximum modulation 
index for sinusoidal narrow-band FM is usually assumed to be around  or less. Would 
you agree?
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Note: You will notice in the above that the high VCO sensitivity achieving narrow band FM 
requires the modulation amplitude to be very small, in fact at the lower limit of the Channel 1 
generator amplitude. The noise being picked up on the VCO input is also noticeable as the 
sidebands are quivering. In the next part internal modulation will be used and noise problem will 
go away. As a rule wideband tuning range VCOs are very susceptible to noise and interference 
ingress on the tuning line.  

3. In the remaining parts to this exercise it will be more convenient to use internal FM modulation, 
so repeat part 1 using internal modulation by a 10 kHz sinusoid. You no longer have the ability 
to set the amplitude of the modulation, instead . Verify that this is the case 
as you will now have to adjust Freq Dev on the generator to get the equivalent modulation 
index of part 1. It should be that  in the  expression is replaced by the generator 
deviation constant Freq Dev. Do you agree?

Figure 5: Internal FM modulation used in the remainder of this portion of the lab and beyond.

4. Increase Freq Dev slowly, observing the FM spectrum and noting the appearance of several 
additional sidebands on the analyzer screen. Use the 10 dB per division vertical scale. At some 
point, after three or four sidebands have appeared, the carrier frequency line will begin to 
decrease in amplitude. Adjust the modulation amplitude until the carrier term is gone. Calculate 
 for this condition and compare your experimental value with theory. Note that the zeros of 

the  Bessel functions are tabulated in mathematical handbooks and communication 
theory texts such as in [1]. A short table of zeros is given in Table 1.
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Table 1: A short table of Bessel function zeros.

5. Now use one-half the modulation frequency of that used above and, by adjusting the input 
signal amplitude, duplicate the conditions observed in 2. How do the amplitudes compare for 
these two cases? Does this agree with the equation for ?

6. Return to the frequency and external amplitude of 2. Increase the input signal level slowly and 
note the signal amplitudes for which  etc., go to zero. At what value of  does 
the carrier term go to zero a second time? Compare your results with theory.

Simulation of the measurements you have been taking is dicussed in the Jupyter notebook sample. 
In Chapter 4 of [1] you learn that a frequency modulated carrier takes the form

where  is the carrier amplitude,  the message signal, here a NRZ data stream, and  is the 
modulator deviation constant having units of Hz per unit of . In a discrete-time implementation 
and with the carrier at , complex baseband FM takes the form

where the integration is replaced by the running sum, cumsum  in Python's numpy. In the plot below 
uses a log scale and is calibrated in dBm. Since the signal is a complex sinusoid you can view the 
spectrum as a single-sided spectrum for the case of a real sinusoid with the plot being made with 

.

Two related simulation examples that obtain the spectrum dBm as an equivalent to a single-sided 
spectrum are given below. The first is for a carrier power of -30 dBm with  and the second 
is for -30 dBm with . Use these examples as a reference in creating simulation models 
for the measurements you have already taken and those that follow.
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Narrow Bandwidth FM  is Small  

Figure 6: Python simulated single-sided spectrum for  small (narrowband FM).

fs = 100000
fc = 0
N_samp = 100000
t = arange(N_samp)/fs
Pc_dBm = -30
fd = 1000 #Hz/v
Am = 0.1
fm = 1000
m = Am*cos(2*pi*fm*t) # sinusoid
#m = Am*sign(cos(2*pi*fm*t)) # square wave
xc = sqrt(10**((Pc_dBm-
30)/10))*exp(1j*2*pi*fd*cumsum(m)/fs)*exp(1j*2*pi*fc*t)
f, Sx = ss.simple_SA(xc,N_samp,2**14,fs)
plot(f,10*log10(Sx)+30)
#psd(xc,2**12,48000);
title(r'Complex Baseband FM Spectrum - $\beta = 0.1$')
ylabel(r'PSD (dBm)')
xlabel(r'Frequency (Hz)')
xlim([-8000,8000])
ylim([-80,-20]);
grid();

1
2
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4
5
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9

10
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12
13
14
15
16
17
18
19
20
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Medium Bandwidth  To Eliminate the First Sideband Pair  

fs = 100000
fc = 0
N_samp = 100000
t = arange(N_samp)/fs
Pc_dBm = -30
fd = 1000 #Hz/v
Am = 3.8317
fm = 1000
m = Am*cos(2*pi*fm*t) # sinusoid
#m = Am*sign(cos(2*pi*fm*t)) # square wave
xc = sqrt(10**((Pc_dBm-
30)/10))*exp(1j*2*pi*fd*cumsum(m)/fs)*exp(1j*2*pi*fc*t)
f, Sx = ss.simple_sa(xc,N_samp,2**14,fs)
plot(f,10*log10(Sx)+30)
#psd(xc,2**12,48000);
title(r'Complex Baseband FM Spectrum - $\beta = 3.8317$')
ylabel(r'PSD (dBm)')
xlabel(r'Frequency (Hz)')
xlim([-8000,8000])
ylim([-80,-20]);
grid();
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Figure 7: Python simulated single-sided spectrum for , which makes the first sideband pair 
null to zero..

7. The parameter  is sometimes written as . That is, , and  is called 
the frequency deviation. It is the maximum instantaneous frequency or the peak swing in 
carrier frequency from its unmodulated value. The bandwidth occupied by an FM signal is 
related to the peak deviation, but not in a rigorous fashion. Set the peak deviation, 

, at a fixed value that gives sidebands out to about kHz (Freq Dev = 75 kHz 
works well with  kHz) on each side of the carrier and use about kHz per division on 
the analyzer, which is a span of 500 kHz, here centered at 50 MHz. Observe and comment on 
the spectrum you see.

8. Decrease the modulating frequency without changing , and notice the effect on the 
spectrum. Measure the bandwidth at several different modulating frequencies, e.g., 10 kHz, 5 
kHz, and 1 kHz. If you are using the 10dB per division vertical scale you can define spectral 
bandwidth in terms of the band of frequencies for which the spectrum is say 10 to 20 dB down 
from its peak value. Calculate the relationship between  and bandwidth for each. Carson's 
rule for FM by a sinusoidal signal of frequency  states that the 98% containment bandwidth 
is approximately

  Would you agree with this approximation?

9. As a cross-check export corresponding  .csv  files for the three  and  combinations. 
The Jupyter notebook sample contains a helper class for processing the .csv  files into 
spectrum plots and calculates the 98% fractional bandwidth as obtained from the actual 
measurements.

Example Import  

See the Lab 5 Jupyter notebook sample for details on the FieldFox_capture  class. Here the 
capture is at  MHz, -10 dBm,  kHz and Freq Dev = 50 kHz. 

# Create an instance of the capture class for a given csv file:
sin_FM = FieldFox_capture('SIN_10K50K30Mfc.csv')

1
2

# Check the total power of the capture:
sin_FM.total_power_dBm()

1
2

Total power in capture = -10.17 dBm1
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Figure 8: Power spectrum plot from imported file SIN_10K50K30Mfc.csv .

# Calculate the 98% bandwidth:
sin_FM.bandwidth(fc=30e6)

1
2

98 percent BW = 0.121 MHz1

# Carson's rule check:
print('BW = %4.3f MHz' % (2*(.05 + 0.01),))

1
2

BW = 0.120 MHz1

sin_FM.spectrum_plot(30e6)
ylim([-80,-10]);

1
2

Lab 5 Page 13 of 29



FM with Other than Sinusoidal Signals  

The Fourier series (or transform) for an FM waveform is mathematically tractable for only a few 
special cases, the sinusoidal case being one of them. For signals which are more complicated, the 
detailed structure of the spectrum cannot be analyzed. Only a few rules relating modulating 
frequency, bandwidth, and peak deviation can be used to describe the frequency domain 
representation of FM for the general case.

Suppose  is a zero average value square wave of amplitude . Then the instantaneous 
frequency of the resulting FM signal jumps from  to  or from  
to . Mathematically we can write this as

where

For this special case the power spectral density of  is relatively easy to obtain. Clearly  
will consist of delta functions spaced at multiples of . The envelope of  is proportional 
to . This model will be further developed in the Jupyter notebook sample sometime in the 
future (not used Spring 2019).

Laboratory Exercises  

1. Using a setup similar to Figure 5 set the Channel 2 carrier to 50 MHz at -15 dBm and 
configure the internal modulation to be a square wave at  kHz. 

2. Observe the spectrum on the analyzer as Freq Dev  is increased over the values of 20, 
100, 500, and 1000 kHz. Center the spectrum analyzer on 50 MHz and set the span as needed 
to a clear view of what I call the suspension bridge spectrum.Compare your measured results 
to a Python simulation. A sample result, taken from the Jupyter notebook sample is shown 
below:

fs = 100000
fc = 0
N_samp = 500000
Nfft = 2**15
t = arange(N_samp)/fs
Pc_dBm = -30

1
2
3
4
5
6
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Figure 9: Square wave spectrum (suspension bridge) simulation where the frequency axis is shifted 
about zero.

Note as the peak deviation increases more and more sidebands need to be plotted and that will 
require Nfft  to be an even high power of two. A higher power of two in turn means that the 
number of simulation sample points, N_samp , will have to be increased. 

3. Does Carson's rule seem to hold for this signal if you define BW as the -15 dB spectrum width 
below the peaks?

fd = 1000 #Hz/v
Am = 20
fm = 500
#m = Am*cos(2*pi*fm*t) # sinusoid
m = Am*sign(cos(2*pi*fm*t)) # square wave
xc = sqrt(10**((Pc_dBm-
30)/10))*exp(1j*2*pi*fd*cumsum(m)/fs)*exp(1j*2*pi*fc*t)
f, Sx = ss.simple_sa(xc,N_samp,Nfft,fs)
plot(f/1e3,10*log10(Sx)+30)
#psd(xc,2**12,48000);
title(r'Complex Baseband FM Spectrum - Square wave')
ylabel(r'PSD (dBm)')
xlabel(r'Frequency (kHz)')
#xlim([-8000,8000])
ylim([-80,-40]);
grid();

7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
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4. More calculate the BW by exporting the four .csv  spectrum captures to the Jupyter 
notebook and making use of the FieldFox_capture  class as you did for the sinusoidal FM 
case.

Inserting the RF Board Doubler  

Here you verify the behavior FM following the RF board doubler. From Chapter 4 of [1] you know 
that the theoretical action of a frequency doubler is to place a two in the argument of an angle 
modulated carrier, i.e.,

The real doubler also outputs a weak fundamental term and weak higher-order harmonic terms. In 
this exercise the focus is on the second-harmonic carrier output by the doubler.

Laboratory Exercises  

Verify the doubling math to be a reality by configuring a test setup similar to that shown in Figure 5, 
except now you will be inserting the RF Board doubler. 

1. Set  MHz , Freq Dev = 100 kHz and choose a convenient value for  to validate the 
math model. 

2. Observe the doubler input spectrum at 35 MHz and note the spacing of the spectral lines is 
indeed , . What is the 98% containment bandwidth of the signal?

3. Observe the doubler output spectrum at 70 MHz and note that the spacing of the spectral lines 
is still , . Is this correct? What has changed?  Explain. What is the 98% 
containment bandwidth of the signal.

FM Demodulation  

To recover the information contained in an FM signal requires obtaining the signals instantaneous 
frequency. For the signal 

the instantaneous radian frequency is

where . An ideal discriminator produces output
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Practical implementation of the ideal FM discriminator can be done using analog circuit design or 
using digital signal processing. In this part of the lab we will consider the use of a slope detector 
and an analog phase-locked loop (PLL) with sinusoidal phase detector.

Slope Detection  

Slope detection of FM makes use of the gain slope of a filter to convert frequency deviation into 
amplitude modulation. This make use of a quasi-static approximation, that is given a constant or 
static frequency passing through a filter produces a steady-state amplitude at the filter output 
according to

where  is frequency response of the filter. The quasi-static approximation assumes that the 
filter output response quickly settles to steady-state magnitude and phase, with respect to FM 
carrier instantaneous frequency

This is reasonable as the filter is operating in the realm of the carrier frequency and the maximum 
frequency of  is not greater than  Hz. Thus it follows that

For the the FM to AM conversion to work well the gain slope of the filter needs to be of the form

where  and  are real constants. The relationship of (40) is of the proper form to produce AM that 
can be demodulated using an envelope detector.

Laboratory Exercises  

1. Configure the test set-up of Figure 10 using the RF Board 1 MHz lowpass filter as a means to 
convert FM to AM. Due to component variations your filter response will be slightly different 
from the screenshots embedded in Figure 10.
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Figure 10: Slope detection using the gain slope of the 1 MHz lowpass to convert FM to AM.

2. Obtain results similar to those shown in Figure 10 by setting the carrier frequency somewhere 
above the filter cutoff, e.g. around 1.1 MHz, and use sinusoidal tone modulation with  
Hz. Adjust the *Freq Dev to be around 50 kHz.

3. Optional for bonus points create a Python model of the lowpass filter as a 5th-order digital 
Chebyshev type 1 filter driven by a sinusoidal FM signal source. Observe the output and see a 
similar AM signal is obtained. The sampling rate will need to be around 10-100 Msps, so the 
computational burden will be rather high. You will only need, say two cycles of a 500 Hz 
message sinusoid. At  MHz this requires just  samples.  
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First-Order Analog PLL  

An analog phase-locked loop (PLL) with sinusoidal phase detector, is shown in Figure 11, for FM 
demodulation.

Figure 11: General PLL diagram employing a sinusoidal phase detector.

For modeling purposes we let

Note that frequency error may also be included in . Assuming the double 
frequency term is removed, we can write

The VCO, see Figure 12, converts voltage to frequency deviation relative the VCO quiescent 
frequency . The VCO output instantaneous frequency in Hz is

Figure 12: VCO model for a PLL.

The frequency deviation in radians/s is

In mathematical terms we now close the loop by connecting the phase detector output to the VCO 
through a convolution of the loop filter impulse response
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This equation can be represented in block diagram form as  the nonlinear feedback control model 
of Figure 13.

Figure 13: Non-linear baseband PLL model.

When the loop is in lock, with small phase error, i.e. 

we can linearize the loop. This linearizing leads to the -domain PLL model shown in Figure 14.

Figure 14: Linear baseband PLL model.

Working from the block diagram we can solve for  in terms of 

where we can lump the phase detector gain into , thus

Finally, the closed-loop transfer function, , can be written as
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For a first-order PLL , then we have

We are finally in a position to consider the details of how the first-order PLL recovers the FM 
message signal . With FM the phase deviation at the PLL input of Figure 14, is

where . The VCO control voltage input is

The 3dB bandwidth in Hz of the FM demodulator is just the loop gain divided by 

The linear analysis assumes that the loop is in lock. The first-order PLL is in lock if . 
The governing relationship for the loop to be in lock is the nonlinear differential equation of (25). 
For the case of the first-order loop we have

Suppose the loop is in lock for  and the input phase deviation undergoes a step change in 
frequency, i.e.,

where we assume . Combining this with (25), we can write

A plot of  versus  is known as the phase plane plot. The phase plane plot for a first-
order PLL having  is shown in Figure Phase_Plane. At  the phase plane operating point 
jumps to . Since  is also positive, we conclude that  is also positive. If 

 should become negative  is also negative, which drives the operating point to the 
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stable lock point  which again has  (a frequency error of zero). Due to the finite 
loop gain, , there is a steady-state phase error  when the loop finally settles. We conclude 
that for the loop to lock, or in this case remain locked, the phase plane curve must cross the 

 axis.

Figure 15: Phase plane plot for first-order PLL with a frequency step of .

The maximum  the loop can handle is  rad/s, so the total lock range of the PLL is

where we recall that  is the VCO quiescent frequency. For a given  within the lock range, the 
steady-state phase error is

Laboratory Exercises  

Consider the test setup shown in Figure 16 below: 
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Figure 16: Instrument configuration for building a first-order PLL using one of the mixers on the RF 
board.

1. Configure the test set-up of Figure 16. In particular Channel 1 is now used as a VCO centered 
at 50 MHz and +6 dBm power with Freq Dev of 500 kHz and external Mod In at +5V. : 
You earlier characterized Channel 1 as a VCO with a Freq Dev of 5 MHz. With the deviation 
reduced to 500 kHz the sensitivity  in V/Hz will be reduced by a factor of 10 (why?).   
Channel 2 is configured initially as an unmodulated carrier at nominally 50 MHz and -15 dBm 
power level. Note that the loop filter in this case is just a wire from the phase detector directly 
to the VCO input (back panel of the 33600). Initially do not connect the phase detector output 
to the VCO input, but do probe with the scope to see the difference frequency at the phase 
detector output. When the input signal and VCO are slightly offset in frequency, you observe 
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the difference frequency (beat note) on the scope. It is of the form

which is actually of the same form of the phase detector output when the loop is locked, that is 
. Note as mentioned earlier the phase detector gain coefficient  is equivalent to 
 shown in Figures 13 and 14. The phase detector gain, in volts per radian, is thus the 

peak voltage you observe on the scope. Record the value of  you observe for PLL closed-loop 
analysis. 

2. Calculate  using the measured value of  and the previously measured value of the VCO 
sensitivity, now scaled by 1/10. Formally you need to have  in rads/s, but since we are most 
interested in the lock range in Hz,  in Hz/v and hence  in Hz is sufficient.

3. Now close the loop by connecting the VCO to the phase detector output. Verify that the loop is 
locked by observing the phase detector output on the scope using DC coupling. The beat note 
should be gone and you should see a DC level. You might need to lock the loop by tuning the 
Channel 2 signal (RF input) in small steps above or below the nominal 5 MHz set value. Once 
the loop locks you will notice that the DC level you observe moves up and down with the 
frequency tuning of the input signal. Next measure the lock range of the PLL by varying the 
frequency of the input signal above and below 50 MHz. Take relatively small steps to insure 
that the loop does not jump out of lock before reaching the true upper and lower lock range 
limits. For the first-order PLL this should be twice the open loop gain in Hz, that is twice the 
product of the peak phase detector output voltage times the VCO sensitivity  in Hz/v. See if 
your calculations agree with your observation. Python nonlinear loop simulation using 
sk_dsp_comm.synchronization.pll1 shows what happens when the frequency of the input 

signal exceeds the lock range.

1st-Order PLL Nonlinear Simulation
Three modulation types can inserted by commenting and uncommenting code: frequency step, 
sinusoidal FM and sqaure wave FM.

Frequency Step Exceeds Lock Range

import sk_dsp_comm.synchronization as pll1

# Sampling rate is well above the expected loop bandwidth K_t/(2pi) of ~4500 
Hz.
fs = 100000
Kt_Hz = 4500
t = arange(0,2.5,1/fs)
# FM modulation m(t) with fD = 1 Hz/volt so peak deviation is max{m(t)}
Df = 4501 # peak deviation in Hz
# Freq Step

1

2
3
4
5
6
7
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Figure 17: Python first-order PLL phase detector output/VCO input when frequency offset exceeds the 
lock range (  of 4500 Hz in this case).

m = Df*ss.step(t-.5)
# Sinusoidal FM
fm = 100
#m = Df*cos(2*pi*fm*t)*ss.step(t-.5)
# Squarewave FM
#m = Df*sign(cos(2*pi*fm*t))*ss.step(t-.5)
# Accumulate freq to phase to form input to baseband PLL
phi = 2*pi*cumsum(m)/fs 
theta_hat, ev, psi = pll.PLL1(phi,fs,1,1,Kt_Hz,0.707,1)
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plot(t,ev)
#plot(t,psi)
xlabel(r'Time (s)')
ylabel(r'VCO Control Voltage ($K_v$ in Hz is one)')
xlim([0.48,0.55])
title(r'VCO Control Voltage as Frequency Deviation in Hz')
grid();
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Figure 18: Python first-order PLL phase error output showing cycle slipping when frequency offset 
exceeds the lock range (of 4500 Hz in this case).

Case Study 1: Sinusoidal FM

4. Now apply FM modulation by properly configuring the modulation options for Channel 2 of the 
33600. Note the screen shots in Figure 16 are for square wave modulation with the scope 
showing the VCO control voltage the spectrum analyzer showing the VCO spectrum as it is 
phase locked to the input RF signal. On Channel 2 set Freq Dev to 2 kHz, waveform to sine at 

 Hz. Assuming the closed-loop bandwidth is greater than 100 Hz (is should be around 
4500 Hz for the setting discussed in Figure 16), the PLL should be tracking the FM input signal, 
that is the VCO control voltage (phase detector output voltage) will follow the modulation. 
Verify this on the scope. This waveform is the demodulated FM signal. Compare your results 
with the Python simulation shown in Figure 18. If the modulation is switched to a square wave 
you should see the loop properly tracking the modulation, but should be able to observe the 
rise time/fall time is controlled by the finite loop bandwidth.

#plot(t,ev)
plot(t,psi)
xlabel(r'Time (s)')
ylabel(r'Phase $\psi$ (rad)')
#xlim([0.48,0.55])
title(r'Unwrapped Phase: Slipping Cycles')
grid();

1
2
3
4
5
6
7

Lab 5 Page 26 of 29



Case Study 2: Square wave FM

# Sampling rate is well above the expected loop bandwidth K_t/(2pi) of ~4500 
Hz.
fs = 100000
Kt_Hz = 2000
t = arange(0,2.5,1/fs)
# FM modulation m(t) with fD = 1 Hz/volt so peak deviation is max{m(t)}
Df = 400 # peak deviation in Hz
# Freq Step
#m = Df*ss.step(t-.5)
# Sinusoidal FM
fm = 50
#m = Df*cos(2*pi*fm*t)*ss.step(t-.5)
# Squarewave FM
m = Df*sign(cos(2*pi*fm*t))*ss.step(t-.5)
# Accumulate freq to phase to form input to baseband PLL
phi = 2*pi*cumsum(m)/fs 
theta_hat, ev, psi = pll.PLL1(phi,fs,1,1,Kt_Hz,0.707,1)
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plot(t,ev)
#plot(t,psi)
xlabel(r'Time (s)')
ylabel(r'VCO Control Voltage ($K_v$ in Hz is one)')
xlim([0.502,0.52])
title(r'VCO Control Voltage as Frequency Deviation in Hz')
grid();
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Figure 19: Python first-order PLL demodulated FM/phase detector output/VCO input with square wave 
FM..

5. Verify that if you increase the Freq Dev of Channel 2 too far, the PLL will loose lock. Decrease 
the gain of the PLL by decreasing Freq Dev on Channel 1 (this will decrease  by 1/2) from 
500 kHz to 250 kHz. By halving the loop gain the lock range is halved and the PLL will likely 
fail to track the input FM unless Freq Dev is reduced for Channels.

Digital PLL Using Pyaudio_helper  

Below is a block diagram of a DSP-based PLL built around pyaudio_helper . This portion of the 
experiment is under development, but code, found in the sample Jupiter notebook, does function.
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Appendix

What do we need?
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