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Abstract— Uninfluenced social systems often exhibit sub-
optimal performance; a common mitigation technique is to
charge agents specially-designed taxes, influencing the agents’
choices and thereby bringing aggregate social behavior closer
to optimal. In general, the efficiency guaranteed by a particular
taxation methodology is limited by the quality of information
available to the tax-designer. If the tax-designer possesses a
perfect characterization of the system, it is often straightfor-
ward to design taxes which perfectly optimize the behavior of
the agent population. In this paper, we investigate situations
in which the tax-designer lacks such a perfect characterization
and must design taxes that are robust to a variety of model
imperfections. Specifically, we study the application of taxes
to a network-routing game, and we assume that the tax-
designer knows neither the network topology nor the tax-
sensitivities and demands of the agents. Nonetheless, we show
that it is possible to design taxes that guarantee that network
flows are arbitrarily close to optimal flows, despite the fact
that agents’ tax-sensitivities are unknown to us. We term
these taxes “universal,” since they enforce optimal behavior
in any routing game without a priori knowledge of the specific
game parameters. In general, these taxes may be very high;
accordingly, for affine-cost parallel-network routing games, we
explicitly derive the optimal bounded tolls and the best-possible
efficiency guarantee as a function of a toll upper-bound.

I. INTRODUCTION

It is well-known that in systems that are driven by social
behavior, agents’ self-interested behavior can lead to signif-
icant system-level inefficiencies. This inefficiency is com-
monly referred to as the price of anarchy; defined as the ratio
between the worst-case social welfare resulting from selfish
behavior and the optimal social welfare [1]. This inefficiency
due to selfish behavior has been the the subject of research
in the areas of network resource allocation [2], distributed
control [3], traffic congestion [4]–[6], and others. As a result,
there is a growing body of research geared at influencing
social behavior to improve system performance [7]–[13].

To study the issues surrounding the problem of influencing
selfish social behavior, we turn to a simple model of traffic
routing: a unit mass of traffic needs to be routed across a
network in such a way that minimizes the average network
transit time. If a central planner has the ability to direct traffic
explicitly, it is straightforward to compute the routing profile
that minimizes total congestion. However, in real systems, it
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may not be possible to implement such direct centralized
control: for example, if the network represents a city’s road
network, individual drivers make their own routing choices
in response to their own personal objectives.

Accordingly, we model this routing problem as a non-
atomic congestion game, where the traffic can be viewed
as a collection of infinitely-many users, each controlling an
infinitesimally-small amount of traffic and seeking to mini-
mize its own experienced transit time. We use the concept
of a Nash flow (defined as a routing profile in which no user
can switch to a different path and decrease her transit delay)
to characterize the routing profile resulting from such self-
interested behavior. It is widely known that Nash flows can
be significantly less efficient than optimal flows; an important
result in this setting states that a Nash flow on a network with
linear-affine latency functions can be up to 33% worse than
the optimal flow; that is, the price of anarchy in this setting
is 4/3. For networks with general latency functions, the price
of anarchy can be unbounded [14].

A natural approach to mitigating this inefficiency is to
charge monetary taxes for the use of network links, thereby
modifying the users’ costs and inducing a new, more efficient
Nash flow. Existing research has shown that it is possible
to design such optimal taxes given that the tax-designer
has access to certain information regarding the system.
Typically, these types of results have strict informational
requirements; for example, in [15]–[17] it is shown that
optimal “fixed” taxes can be computed for any routing game,
but the computation requires precise characterizations of the
network topology, user demands, and user tax-sensitivities. In
contrast, [18], [19] derive optimal taxes known as “marginal-
cost taxes” which require no knowledge of the network
topology or user demands, but require that all users share
a common tax-sensitivity. In Section III, we survey these
existing results in greater detail; see the first two rows
of Table I for a side-by-side comparison of the particular
design constraints and informational dependencies of these
two taxation mechanisms.

In this paper, we ask if it is possible to compute optimal
taxes with no information about the system. Our main con-
tribution is the derivation of a universal taxation mechanism
that guarantees arbitrarily-high efficiency for any routing
game without requiring a priori knowledge of the specific
network or distribution of user sensitivities or demands. This
result holds for networks with very general latency functions
and any topology. In the third row of Table I, we summarize
this contribution in context with some existing results.

Since very high tolls may be impossible (or politically
unpalatable) to implement, our second contribution is to



TABLE I

Toll Type Design Constraints Informational Dependencies
Constant Functions Boundedness Topology Demands Sensitivities Efficiency Guarantee

Fixed [16], [17] X X X X 100%
Marginal-Cost [18], [19] X 100%
Universal (Theorem 1) 100%

Bounded Affine (Theorem 2) X — Function of toll upper bound

Design constraints, informational dependencies and efficiency guarantees of several taxation methodologies. Fixed tolls are simple constant functions of
flow, but to to guarantee optimality, they depend heavily on a precise system characterization. Marginal-cost tolls, though flow-varying, guarantee

optimality while only requiring knowledge of the (homogeneous) user-sensitivities. In this paper, Theorem 1 defines tolls which require none of the
above information, but are flow-varying and may be arbitrarily large. By contrast, Theorem 2 derives the optimal bounded tolls for a sub-class of

networks, and guarantees efficiency that is increasing in the toll upper-bound.

explore the effect of an upper bound on the allowable tolling
functions. To that end, for parallel networks with linear-affine
latency functions, we derive the optimal tolling functions
that minimize worst-case efficiency losses for any unknown
distribution of user sensitivities and toll upper bound, again
requiring no a priori knowledge of the network topology.
Surprisingly, these optimal tolls are simple affine functions
of flow. We show that for parallel networks with linear-
affine cost functions and simple user demands, the worst-case
efficiency losses decrease monotonically with the toll upper
bound, illustrating the concept that we can compensate for a
poor characterization of user sensitivities by charging higher
tolls. The last row of Table I pertains to this result.

II. MODEL AND PERFORMANCE METRICS

A. Routing Game

Consider a network routing problem in which a unit mass
of traffic needs to be routed across a network (V,E), which
consists of a vertex set V and edge set E ⊆ (V × V ). We
call a source/destination vertex pair (sc, tc) ∈ (V × V ) a
commodity, and the set of all commodities C. We assume
that for each c ∈ C, there is a mass of traffic rc > 0 that
needs to be routed from sc to tc. We write Pc ⊂ 2E to denote
the set of paths available to traffic in commodity c, where
each path p ∈ Pc consists of a set of edges connecting sc to
tc. Let P = ∪{Pc}.

A feasible flow f ∈ R|P| is an assignment of traffic to
various paths such that for each commodity,

∑
p∈Pc

fp = rc,
where fp ≥ 0 denotes the mass of traffic on path p. Without
loss of generality, we assume that

∑
c∈C rc = 1.

Given a flow f , the flow on edge e is given by fe =∑
p:e∈p fp. To characterize transit delay as a function of

traffic flow, each edge e ∈ E is associated with a specific
latency function `e : [0, 1]→ [0,∞). We assume that latency
functions are nondecreasing, continuously differentiable, and
convex. We measure the the efficiency of a flow f by the
total latency, given by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(fp), (1)

where `p(f) =
∑
e∈p `e(fe) denotes the latency on path p.

We denote the flow that minimizes the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2)

Due to the convexity of `e, L(f∗) is unique.

A routing problem is given by the tuple G =
(V,E, C, {`e}). We write the set of all such routing problems
as G. We will often use shorthand notation such as e ∈ G to
denote (e ∈ G : G ∈ G).

In this paper we study taxation mechanisms for influ-
encing the emergent collective behavior resulting from self-
interested price-sensitive users. To that end, we model the
above routing problem as a non-atomic congestion game. We
assign each edge e ∈ E a flow-dependent, nondecreasing
taxation function τe : R+ → R+. We characterize the
taxation sensitivities of the users in commodity c in the
following way: let each user x ∈ [0, rc] have a taxation
sensitivity scx ∈ [SL, SU] ⊆ R+ where SU ≥ SL ≥ 0 denote
upper and lower sensitivity bounds, respectively. Given a
flow f , the cost that user x experiences for using path p̃ ∈ Pc
is of the form

Jx(f) =
∑
e∈p̃

[`e(fe) + scxτe(fe)] , (3)

and we assume that each user selects the lowest-cost path
from the available source-destination paths. We call a flow
f a Nash flow if for all commodities c ∈ C and all users
x ∈ [0, rc] we have

Jx(f) = min
p∈Pc

{∑
e∈p

[`e(fe) + scxτe(fe)]

}
. (4)

It is well-known that a Nash flow exists for any non-atomic
congestion game of the above form [20].

In our analysis, we assume that the sensitivity distribution
function s is unknown; for a given routing problem G and
SU ≥ SL ≥ 0 we define the set of possible sensitivity
distributions as the set of Lebesgue-measurable functions
S = {sc : [0, rc]→ [SL, SU]}c∈C .

For a given routing problem G ∈ G, we gauge the
efficacy of a collection of taxation functions τ = {τe}e∈E by
comparing the total latency of the resulting Nash flow and
the total latency associated with the optimal flow, and then
performing a worst-case analysis over all possible sensitivity
distributions. Let L∗(G) denote the total latency associated
with the optimal flow, and Lnf(G, s, τ) denote the total
latency of the Nash flow resulting from taxation functions
τ and sensitivity distributions s. The worst-case efficiency
loss associated with this specific instance is captured by the
price of anarchy which is of the form

PoA(G, τ) = sup
s∈S

{
Lnf (G, s, τ)

L∗(G)

}
≥ 1.



B. Summary of Our Contributions

In Theorem 1 we prove that if each edge’s taxation
function is given by

τe(fe) = κ

(
`e(fe) + fe

d

dfe
`e(fe)

)
, (5)

for κ ∈ R+, the price of anarchy converges to 1 as κ
approaches infinity, for any user sensitivities and network
topology. Thus, the toll designer can enforce arbitrarily-high
efficiency simply by charging these tolls with sufficiently
high κ. Note that these tolls are universal in the sense
that they have no dependence on the specific network or
sensitivity distribution.

However, in some situations it may be impractical to
charge very high tolls; for example, it may be politically
unpalatable, or there may be a degree of elasticity in network
demand. Accordingly, in Theorem 2, we investigate the
effect of an upper bound T on allowable tolling functions
for single-commodity parallel networks in which each `e
is linear-affine. Though one might expect that the optimal
tolling functions in this situation would be equal to the toll
presented in Theorem 1 for some value of κ, this is not
generally the case.

Theorem 2 shows that there exist functions κ1(G, S, T )
and κ2(G, S, T ) such that if an edge’s latency function is
`e(fe) = aefe + be, the optimal tolling function is given by

τe(fe) = κ1(G, S, T )aefe + κ2(G, S, T )be, (6)

and we derive expressions for the price of anarchy when
using this tolling methodology. Since κ1(·) and κ2(·) do not
depend on instance-specific parameters, these tolls can be
applied without a priori knowledge of the specific routing
instance. Thus, these efficiency guarantees are robust to a
wide variety of mischaracterizations of the routing scenario.

For the simple 2-link network known as Pigou’s Example
depicted in Figure 1, we plot the price of anarchy resulting
from the the taxation mechanisms proposed in Theorems 1
and 2 with respect to a toll upper bound. Note that though
both curves converge to 1 (i.e., they both guarantee perfectly
optimal flows in the large-toll limit), the tolls from The-
orem 2 converge much more quickly. This shows that the
universal guarantees made by Theorem 1 come at a price:
if we have additional information about the specific class of
networks, we may be able to guarantee significantly higher
efficiency for a given upper bound.

III. RELATED WORK

There has been significant research geared towards de-
veloping taxation mechanisms to eradicate the inefficiency
caused by users’ self-interested routing choices. A taxation
mechanism simply computes edge tolls as a function of some
set of information about the system; here we survey the
informational dependencies of several taxation approaches
in the literature.
– Omniscient taxation mechanisms: These taxation mecha-
nisms are assumed to have access to complete information
regarding the routing game. For edge e ∈ G, with sensitivity

Fig. 1. Price of Anarchy plot contrasting the Universal toll result in
Theorem 1 (dashed line) with the optimal toll result from Theorem 2 (solid
line). Note that the price of anarchy of either taxation mechanism converges
to 1 as the upper bound increases, but the solid line converges much more
quickly. This is because Theorem 2 gives the optimal tolls for a specific
class of networks, but the universal tolls from Theorem 1 are designed to
work on all classes of networks.

distribution s ∈ S, the edge tolling function takes the
following form: τe (fe;G, s) . That is, each edge’s taxation
function can depend on the entire routing problem G and
the sensitivity distribution s. Recent results have identified
taxation mechanisms of this form that assign fixed tolls (i.e.,
for any e ∈ G, τe(fe) = qe for some qe ≥ 0) that guarantee
a price of anarchy of 1 [16], [17].

However, the robustness of these mechanisms to variations
or mischaracterizations of network topology is unknown, and
in [21], the authors show that fixed tolls can never guarantee
a price of anarchy of 1 if the user sensitivities are unknown.
– Network-agnostic taxation mechanisms: This type of taxa-
tion mechanism is agnostic to network specifications. Here,
a system designer essentially commits to a taxation function
for each potential edge e ∈ G, and any network realization
(G, s) ∈ G×S merely employs a subset of these pre-defined
taxation functions. An edge’s toll cannot depend on any other
edge’s congestion properties or location in the network.

A commonly-studied network-agnostic taxation mecha-
nisms is the marginal-cost (or Pigovian) taxation mechanism
τmc, which is of the following form: for any e ∈ G with
latency function `e, the accompanying taxation function is

τmc (fe) = fe ·
d

dfe
`e(fe), ∀fe ≥ 0. (7)

In [18] the author shows that for any G ∈ G we have
L∗(G) = Lnf (G, s, τmc) provided that all users have a sen-
sitivity exactly equal to 1. Hence, irrespective of the under-
lying network structure, a marginal-cost taxation mechanism
always ensures the optimality of the resulting Nash flow,
provided that all users share a common known sensitivity.

Finally, in [21], the authors show that marginal-cost taxes
scaled by

√
SLSU do possess a degree of robustness to

mischaracterizations of user sensitivities, but can no longer
guarantee a price of anarchy of 1.

IV. THEOREM 1: A UNIVERSAL TAXATION MECHANISM

In this paper, we prove that network-agnostic tolls exist
which can drive the price of anarchy to 1 for general
networks and latency functions. We term these “universal”
because they take the same form and provide the same
efficiency guarantee regardless of which particular routing
scenario they are applied to. Using this taxation mechanism,
we show in Theorem 1 that for all networks, regardless of



network topology, user demands, or price-sensitivity func-
tions, the price of anarchy can be made arbitrarily close to
1 if we allow edge tolls to be sufficiently high.

Theorem 1: For any network edge e ∈ G with convex,
nondecreasing, continuously differentiable latency function
`e, define the generalized Pigovian taxation function on edge
e as

τgpt(κ) = κ

(
`e(fe) + fe ·

d

dfe
`e(fe)

)
. (8)

Then for any routing problem G ∈ G and any SU ≥ SL > 0,

lim
κ→∞

PoA
(
G, τgpt(κ)

)
= 1. (9)

That is, on any network being used by any population
of users, the total latency can be made arbitrarily close to
the optimal latency, and each individual link toll is a simple
continuous function of that link’s flow. The reason for this is
that as κ increases, the original latency function has a smaller
and smaller relative effect on the users’ cost functions; in the
large-toll limit, the only cost experienced by the users is the
tolling function itself which is specifically designed to induce
optimal Nash flows.

Proof: Using a sequence of tolls, we construct a
sequence of Nash flows that converges to an optimal flow.
Let κn be an unbounded, increasing sequence of tolling
coefficients.

For any routing problem G ∈ G and price-sensitivities s ∈
S, let fn =

(
fnp
)
p∈P denote the Nash flow resulting from the

tolling coefficient κn. For each commodity c, let Pnc ⊆ Pc
denote the set of paths that have positive flow in fn. For any
p ∈ Pnc , there must be some user x ∈ [0, rc] using p; suppose
this user has sensitivity scx, then the cost experienced by this
user is given by

Jx(fn) =
∑
e∈p

[
`e(fe) + κns

c
x

(
`e(fe) + fe ·

d

dfe
`e(fe)

)]
.

Define
γn,x =

κns
c
x

1 + κnscx
.

Let `∗e(fe) = fe · d
dfe
`e(fe); then for any other path p′ ∈

Pc \ p, user x must experience a lower cost on p than on p′,
or∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤ γn,x

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

.
(10)

Therefore, for any n ≥ 1, fn must satisfy some set of
inequalities defined by (10). Note that for all c ∈ C and any
x ∈ [0, rc], limκn→∞ γn,x = 1, so because all the functions
in (10) are continuous, fn converges to a set F ∗ of feasible
flows that satisfy

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

 (11)

for all c, all p ∈ P∗c , and p′ ∈ Pc, where P∗c ⊆ Pc is
some subset of paths. But inequalities (11) (combined with

Fig. 2. Figure for Example 1. The plot shows the Nash flows and price of
anarchy as a function of κ. The bold curves represent the possible edge-1
Nash flows as a function of κ: the gray-shaded area highlights all Nash
flows that could result from some sensitivity distribution in [1, 10]. Note
that if κ = 0, the figure shows a Nash flow with f1 = 1, but that the Nash
flows in the shaded area converge to f1 = 1/2 as κ → ∞. The dotted
horizontal lines show the price of anarchy that results from a flow at that
level. Note that the price of anarchy decreases rapidly with κ, and by the
time κ is greater than 10, the price of anarchy is already well below 1.01.

the feasibility constraints on f ) also specify a Nash flow for
G for a unit-sensitivity population with marginal-cost taxes
as defined in (7); any such Nash flow must be optimal [18];
that is, any f ∈ F ∗ is a minimum-latency flow for G. Thus,
since L(f) is a continuous function of f ,

lim
n→∞

L (fn) = L∗ (G) , (12)

obtaining the proof of the theorem.

Example 1 [An Application of Theorem 1] Consider again
the simple two-link network depicted on the left in Figure 1;
this is the canonical network known as “Pigou’s Example.”
An un-tolled Nash flow on this network has all traffic using
the upper congestion-sensitive link (with a total latency of
1), while the optimal flow has the traffic split evenly between
link 1 and link 2 (with a total latency of 0.75), for a price
of anarchy of 4/3.

Suppose we only know the toll-sensitivities of the user
population to within 10%, or SL = 1 and SU = 10, and we
wish to design tolls that reduce the price of anarchy as close
to 1 as possible. On this network, Theorem 1 assigns tolling
functions τ1(f1) = 2κf1 and τ2(f2) = κ; we simply need to
set κ high enough to achieve our desired performance.

Figure 2 shows plots of the Nash flows and price of
anarchy as a function of κ. Note that for a two-link network,
a network flow is uniquely determined by the flow on a
single edge. Thus, the bold curves represent the possible
edge-1 Nash flows as a function of κ; the gray-shaded
area highlights all Nash flows that could result from some
sensitivity distribution in [1, 10]. Note that if κ = 0, the
figure shows a Nash flow with f1 = 1, but that any sequence
of Nash flows in the shaded area converges to f1 = 1/2
as κ → ∞. The dotted horizontal lines show the price of
anarchy that results from a flow at that level. Note that the
price of anarchy decreases rapidly with κ, and by the time κ
is greater than 10, the price of anarchy is already well below
1.01.



V. THEOREM 2: OPTIMAL BOUNDED TOLLS

Of course, it may be impractical or politically infeasible
to charge extremely high tolls. Therefore, in Theorem 2, we
analyze the effect of placing an upper bound on the allowable
tolling functions. If tolling functions are bounded, we show
that the price of anarchy is strictly decreasing in the toll
upper bound, and analytically characterize the effect of this
upper bound for single-commodity parallel-network routing
games. Additionally, we show that for routing games with
affine costs, linear-affine tolling functions are sufficient to
achieve the optimal price of anarchy given a toll upper bound.
That is, we have no need to consider more complicated
classes of tolling functions.

For parallel networks with affine cost functions in which
every edge has positive flow in an un-tolled Nash flow, we
explicitly derive the optimal bounded taxation mechanism,
and then provide an expression for the price of anarchy. To
this end, we say a taxation mechanism is bounded if it never
assigns taxation functions that exceed some upper bound:

Definition 1: Taxation mechanism τ is bounded by T on
a class of routing problems Ḡ if for every edge e ∈ Ḡ, τ
assigns a tolling function that satisfies

τe : [0, 1]→ [0, T ]. (13)

We write the set of taxation mechanisms bounded by T on
Ḡ as T

(
T, Ḡ

)
.

For the following results, let Gp ⊆ G represent the class
of all single-commodity, parallel-link routing problems with
affine latency functions. That is, for all e ∈ Gp, the latency
function satisfies

`e(fe) = aefe + be (14)

where ae and be are non-negative edge-specific constants. By
“single-commodity,” we mean that all traffic has access to all
network edges. Furthermore, we assume that every edge has
positive flow in an un-tolled Nash flow. It will be necessary to
describe classes of networks with bounded latency functions;
to this end, we define G

(
ā, b̄
)
⊂ Gp as the set of parallel,

affine-cost networks such that for every e ∈ G
(
ā, b̄
)
, the

latency function coefficients satisfy ae ≤ ā and be ≤ b̄.
Definition 2: For every edge e ∈ G with latency function

`e a network-agnostic taxation mechanism is a mapping τna :
[0, 1] × {`e}e∈G → {τe} that assigns the following flow-
dependent taxation function to edge e:

τe(fe) = τna (fe; `e) (15)

where τna (f, `) satisfies the following additivity condition:1

for all e, e′ ∈ G and f ∈ [0, 1],

τna (f ; `e + `e′) = τna (f ; `e) + τna (f ; `e′) . (16)
Note that by this definition, the universal taxation mecha-

nism we defined in Theorem 1 is network-agnostic.

1The additivity condition in Definition 2 is a natural assumption which
simply ensures that two edges connected in series will be assigned the same
taxation function as if they were replaced by a single edge whose latency
function is the sum of the underlying latency functions.

Our goal is to derive the bounded network-agnostic taxa-
tion mechanism that minimizes the worst-case selfish routing
on Gp. We define the price of anarchy with respect to class of
routing problems G and bound T as the best price of anarchy
we can achieve on G with a taxation mechanism bounded by
T :

PoA (G, T ) = inf
τ∈T(T,G)

{
sup
G∈G

PoA (G, τ)

}
. (17)

Theorem 2: Let G(ā, b̄) ⊂ Gp be some subset of parallel,
affine-cost networks with finite ā and b̄. For any toll bound T
and SU ≥ SL > 0, define the set of universal parameters by
the tuple U =

(
SL, SU, ā, b̄, T

)
. Then there exist functions

κ1 (U) and κ2 (U) such that the optimal network-agnostic
taxation mechanism bounded by T on G(ā, b̄) assigns tolling
functions

τe(fe) = κ1(U)aefe + κ2(U)be. (18)

Furthermore, the price of anarchy PoA
(
G
(
ā, b̄
)
, T
)

is given
by the following:

4
3

(
1− κ1(U)SL

(1+κ1(U)SL)
2

)
if κ1(U) < 1√

SLSU

4
3

(
1−

(1+κ1(U)SL)
(

SL
SU

+κ1(U)SL

)
(
1+2κ1(U)SL+

SL
SU

)2

)
if κ1(U) ≥ 1√

SLSU
.

(19)

For the reader’s convenience, we include a closed-form
expression for κ1(·) in the appendix as (35), and for κ2(·)
in the proof of Theorem 2 as (27). It is evident from these
expressions that κ1(·) and κ2(·) are both nondecreasing
and unbounded in T ; among other things, this implies
that limT→∞ PoA

(
G
(
ā, b̄
)
, T
)

= 1. Qualitatively, it is
important to note that they depend only on parameters that
are common to all network edges. Thus, the above price of
anarchy expression is universal in the sense that it applies to
all networks in the class G

(
ā, b̄
)
.

We now proceed with the proof of Theorem 2, which relies
on two supporting lemmas. For our first milestone, we restrict
attention to simple affine tolling functions:

Lemma 2.1: Let τA(κ1, κ2) denote an affine taxation
mechanism that assigns tolling functions τe(fe) = κ1aefe +
κ2be. For any κmax ≥ 0, the optimal coefficients κ∗1 and κ∗2
satisfying

(κ∗1, κ
∗
2) ∈ arg min

κ1,κ2≤κmax

{
sup
G∈Gp

PoA
(
G, τA(κ1, κ2)

)}
(20)

are given by

κ∗1 = κmax, (21)

κ∗2 = max

{
0,

κ2maxSLSU − 1

SL + SU + 2κmaxSLSU

}
. (22)

Furthermore, the price of anarchy PoA
(
G, τA(κ∗1, κ

∗
2)
)

is
given by the following expression:

4
3

(
1− κmaxSL

(1+κmaxSL)
2

)
if κmax <

1√
SLSU

4
3

(
1−

(1+κmaxSL)
(

SL
SU

+κmaxSL

)
(
1+2κmaxSL+

SL
SU

)2

)
if κmax ≥ 1√

SLSU
.

(23)



See the Appendix for the proof of Lemma 2.1.
Next, in Lemma 2.2, we investigate the possibility that

some other taxation mechanism could perform better than
the affine τA(κ∗1, κ

∗
2) while still respecting the bound T . To

that end, we assume that some arbitrary taxation mechanism
outperforms affine tolls, and deduce various properties of
these hypothetical tolls. We show that this hypothetical
“better” taxation mechanism must universally charge higher
tolls than our optimal affine tolls.

Lemma 2.2: Let τ∗ be any network-agnostic taxation
mechanism such that for κmax ≥ 0

PoA (Gp, τ∗) < PoA
(
Gp, τA(κ∗1, κ

∗
2)
)
. (24)

Then τ∗ must charge strictly higher tolls than τA(κ∗1, κ
∗
2) on

every edge in every network:

∀ e ∈ Gp, ∀ fe ∈ [0, 1], τ∗e (fe) > τAe (fe). (25)
The proof of Lemma 2.2 appears in the Appendix.

Proof: [Theorem 2] For any non-negative κ1 and κ2,
τA(κ1, κ2) is tightly bounded by

(
κ1ā+ κ2b̄

)
on G

(
ā, b̄
)
.

Note that for κ∗1 and κ∗2 as defined in Lemma 2.1,(
κ∗1ā+ κ∗2b̄

)
is a strictly increasing, continuous function of

κmax. Thus, for any T ≥ 0, there is a unique κ∗max ≥ 0
for which τA(κ∗1, κ

∗
2) is tightly bounded by T on G

(
ā, b̄
)
.

We define the function κ1(U) as the maximal κ∗max for any
T ≥ 0, given SL, SU, ā and b̄. That is, we define κ1(U)
implicitly as the unique function satisfying

κ1(U)ā+ max

{
0,

(
κ21(U)SLSU − 1

)
b̄

SL + SU + 2κ1(U)SLSU

}
= T. (26)

For completeness, in the appendix we include a closed-form
expression for κ1(U) as (35). We define κ2(U) as

κ2(U) = max

{
0,

κ21(U)SLSU − 1

SL + SU + 2κ1(U)SLSU

}
. (27)

Let e′ ∈ Ḡ be an edge with latency function `e′(fe′) =
āfe′ + b̄. By construction, the tolling function assigned by
τA(κ1(U), κ2(U)) to e′ satisfies bound T with equality:
τAe′ (1) = T .

Now let τ∗ be any taxation mechanism with a
strictly lower price of anarchy than τA(κ1(U), κ2(U)).
By Lemma 2.2, τ∗ assigns higher tolling functions than
τA(κ1(U), κ2(U)) on every edge for every flow rate. In
particular, on edge e′, τ∗e′(1) > τAe′ (1) = T , violating bound
T and proving the optimality of τA (κ1(U), κ2(U)) over the
space of all network-agnostic taxation mechanisms bounded
by T . By substituting κ1(U) for κmax in expression (23),
we obtain the complete price of anarchy expression (19).

VI. CONCLUSION

In this paper we have explored several avenues for influ-
encing social behavior when aspects of the underlying system
are unknown. We showed in Theorem 1 that in theory, it is
possible to charge tolls that induce arbitrarily-efficient Nash
flows without requiring knowledge of the network topology,
user demands, or user sensitivities, but that the required
tolls may be very high. To make this more realistic, in

Theorem 2 we investigated the effect of an upper bound
on the allowable tolling functions for affine-cost parallel
networks. We showed that affine tolls are sufficient to achieve
the lowest price of anarchy over the space of all possible
tolling functions, and derived the price of anarchy as an
explicit function of the upper bound on tolling coefficients.
This neatly demonstrated the principle that the more we can
charge, the higher efficiency we can guarantee.

This work is part of a growing body of research on
applying incentive mechanisms to uncertain situations. Here,
we investigate simple affine-latency congestion games; future
work will focus on extending the class of applicable networks
and latency functions. The setting studied in this paper
assumed that user demands were inelastic; an interesting
extension would be to model a degree of elasticity, allowing
users to simply “stay home” if the network travel cost is too
high.
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APPENDIX: PROOFS OF SUPPORTING LEMMAS

In the proof of Lemma 2.1, we show that a Nash flow on
a network with affine tolling coefficients κ1 and κ2 for some
sensitivity distribution s is identical to a Nash flow on the
same network with scaled marginal-cost tolls with κ = κ1
for some other sensitivity distribution s′. We can then use
known analytical techniques for scaled marginal-cost tolls to
derive the optimal κ1 and κ2.

Definition 3 (Brown and Marden, [21]): The scaled
marginal-cost taxation mechanism assigns the following
tolls to any edge e ∈ Gp for any κ ≥ 0:

τ smc
e (fe) = κaefe. (28)

Proof of Lemma 2.1

Let G ∈ Gp, and κ1 ≥ κ2 ≥ 0.2 For user x ∈ [0, 1] with
sensitivity sx ∈ [SL, SU], the cost of edge e ∈ G given flow
f under affine tolls is given by

Jex(f) = (1 + κ1sx)aefe + (1 + κ2sx)be.

Note that we may scale Jex(f) by any factor without changing
the underlying preferences of agent x, provided that the
scale factor is the same for all edges. Thus, without loss
of generality, we may write

Jex(f) =
1 + κ1sx
1 + κ2sx

aefe + be. (29)

Now, define sensitivity distribution s′ by the following: for
any x ∈ [0, 1], s′x satisfies

s′x =
sx(κ1 − κ2)

κ1(1 + κ2sx)
. (30)

By a series of algebraic manipulations, we may combine (29)
and (30) to obtain

Jex(f) = (1 + κ1s
′
x) aefe + be, (31)

which is simply the cost resulting from scaled marginal-cost
tolls (28). Thus, for any sensitivity distribution s, we may
model a Nash flow resulting from affine tolls with coeffi-
cients κ1 and κ2 as a Nash flow for sensitivity distribution
s′ resulting from scaled marginal-cost tolls with κ = κ1.

In [21], the authors show that in this class of networks, the
optimal value of κ for scaled marginal-cost tolls is 1√

SLSU
.

2Here, the requirement that κ1 ≥ κ2 is without loss of generality; later
analysis shows that κ2 > κ1 would always result in a Nash flow with
higher congestion than the un-tolled case.

Therefore, assuming at first that κmax is sufficiently high,
our optimal choice of κ1 is that which satisfies

κ1 =
1√
S′LS

′
U

, (32)

where S′L and S′U are computed according to (30).
We may combine (32) and (30) to obtain the following

characterization of the optimal κ2 with respect to κ1, for
κmax ≥ (SLSU)

−1/2:

κ2 =
κ21SLSU − 1

SL + SU + 2κ1SLSU
. (33)

In [21], the authors derive the following expression for
the price of anarchy with respect to the sensitivity ratio q =
SL/SU for κ∗ = (SLSU)

−1/2:

PoA (G, τ smc(κ∗)) =
4

3

(
1−

√
q(

1 +
√
q
)2
)
. (34)

We may use this expression evaluated at q = S′L/S
′
U to

compute the price of anarchy resulting from optimal affine
tolls for this high-κmax case, obtaining the following for
PoA

(
G, τA(κ∗1, κ

∗
2)
)
:

4

3
·

1−
(1 + κmaxSL)

(
SL

SU
+ κmaxSL

)
(

1 + 2κmaxSL + SL

SU

)2
 .

Finally, we must consider the case when κmax <
(SLSU)

−1/2. Now, (33) prescribes a negative value for κ2,
so the optimal choice is to let κ2 saturate at 0. Now, we are
precisely applying scaled marginal-cost tolls with κ = κ1,
so we apply the fact shown in Lemma 1.2 of [21] that on
this class of networks, if κ ≤ (SLSU)

−1/2, the worst-case
total latency of a Nash flow always occurs for the extreme
low-sensitivity homogeneous sensitivity distribution given by
sx ≡ SL for all x ∈ [0, 1].

Equation (46) in [21] gives the total latency of a Nash
flow for a homogeneous population with sensitivity SL as

Lnf(G,SL, κ) = LR −
κSL

(1 + κSL)
2 Θ,

where LR and Θ are positive constants depending only on
G, satisfying Θ ≤ LR. It is easy to verify that the above
expression is minimized on a subset of [0, (SLSU)

−1/2
] by

maximizing κ, and using the fact that Θ ≤ LR, we may
compute the price of anarchy for κmax < (SLSU)

−1/2

PoA
(
G, τA(κ∗1, κ

∗
2)
)

=
4

3

(
1− κmaxSL

(1 + κmaxSL)
2

)
,

obtaining the proof of Lemma 2.1.

We now proceed with the proof of Lemma 2.2, in which
we derive properties of any taxation mechanism that out-
performs τA(κ∗1, κ

∗
2).



κ1(U) = min

Tā , 2TSLSU − (SL + SU)ā+
√

((SL + SU) ā+ 2TSLSU)
2

+ 4b̄SLSU

(
2ā+ b̄+ T (SL + SU)

)
2SLSU

(
2ā+ b̄

)
 (35)

Fig. 3. Closed-form expression for κ1(U) used in Theorem 2. Note that it is a continuous, unbounded, strictly increasing function of T .

Proof of Lemma 2.2

We define the set of routing problems G0 as follows:
G ∈ G0 is a parallel network consisting of two edges, with
`1(f1) = cf1 and `2(f2) = c.

Let G ∈ G0. For any c, the optimal flow on G is
(f∗1 , f

∗
2 ) = (1/2, 1/2) and the optimal total latency is

L∗(G) = 3c/4, but the un-tolled Nash flow has a total
latency of Lnf(G, s, ∅) = c, so the un-tolled price of anarchy
is 4/3. It is straightforward to show furthermore that if
SU > SL ≥ 0, for any κmax > 0, the price of anarchy of
this particular network equals the expression given in (19);
i.e., PoA

(
G, τA(κ∗1, κ

∗
2)
)

= PoA
(
G, τA(κ∗1, κ

∗
2)
)
. Thus,

if our hypothetical τ∗ outperforms τA in general, it must
specifically outperform τA on any network G ∈ G0, or

PoA (G, τ∗) < PoA
(
G, τA(κ∗1, κ

∗
2)
)
.

Next, we investigate the performance of τ∗ on networks
in G0. Given a network G ∈ G0, the hypothetical tolling
mechanism τ∗ assigns edge tolling functions τ∗1 (f1) and
τ∗2 (f2). Recall that since τ∗ is network-agnostic, there is
some function τ∗ (f ; a, b) such that an edge e ∈ E with
latency function `e(fe) = aefe + be is assigned tolling
function τ∗(fe; ae, be). By analyzing networks in G0, we
can deduce properties of the function with the 2nd and
3rd arguments set to 0, since τ∗1 (f1) = τ∗(f1; c, 0) and
τ∗2 (f2) = τ∗(f2; 0, c).

Now we show that τ∗ must assign higher tolls than
τA(κ∗1, κ

∗
2). Let SU > SL. By design, the worst-case Nash

flows resulting from τA(κ∗1, κ
∗
2) occur for homogeneous

populations with s = SL and s = SU. Since any network
G ∈ G0 has only 2 links, we can characterize a Nash flow
simply by the flow on edge 1; accordingly, let fL(c) denote
the flow as a function of c on edge 1 in the Nash flow
resulting from sensitivity distribution s = SL, and fH(c)
the corresponding edge 1 flow for s = SU. These flows are
the solutions to the following equations:

cfL(c) (1 + κ∗1SL) = c (1 + κ∗2SL) , (36)
cfH(c) (1 + κ∗1SU) = c (1 + κ∗2SU) . (37)

We may combine and rearrange the above in the following
way:

κ∗1 (fL(c)− fH(c)) =
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU
. (38)

It is always true that fH(c) < fL(c). By design, L(fL(c)) =
L(fH(c)). Note that L is simply a concave-up parabola in
the flow on edge 1.

Now, let f∗L(c) and f∗H(c) be similarly defined as the Nash
flows resulting from τ∗ for a given value of c; i.e., the

solutions to

cf∗L(c) + τ∗1 (f∗L(c))SL = c+ τ∗2 (1− f∗L(c))SL, (39)
cf∗H(c) + τ∗1 (f∗H(c))SU = c+ τ∗2 (1− f∗H(c))SU. (40)

Since τ∗ guarantees better efficiency than τA(κ∗1, κ
∗
2), it

must do so in particular for these homogeneous sensitivity
distributions s = 1 and s = SU. Since L is a parabola, this
means that for any c, fH(c) < f∗H(c) < f∗L(c) < fL(c).

Define the nondecreasing function ∆∗(f) = τ∗2 (f) −
τ∗1 (1 − f) (which is implicitly also a function of c), so
equations (39) and (40) can be combined and rearranged to
show

∆∗(f∗L(c))−∆∗(f∗H(c)) = c

[
f∗H(c)

SU
− f∗L(c)

SL
+

1

SL
− 1

SU

]
> c

[
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU

]
= κ∗1c (fL(c)− fH(c)) (41)

We can loosen the above inequality even further by replacing
f∗L(c) with fL(c) and f∗H(c) with fH(c), and substituting
from (38) and rearranging, we finally obtain

∆∗(fL(c))−∆∗(fH(c))

fL(c)− fH(c)
> κ∗1c. (42)

Since this must be true for any c > 0, the average slope
of ∆∗(f) must be greater than κ∗1c for all f > 0. Since
τ∗2 (f) ≥ 0 this implies that τ∗1 (f) > κ∗1cf for all f > 0, or
that

τ∗(f ; a, 0) > τA(f ; a, 0) (43)

for all positive f and a.
Now consider the following rearrangement of (40):

τ∗2 (1− f∗H(c)) = [cf∗H(c) + τ∗1 (f∗H(c))− cSU] · 1

SU

> c [(1 + κ∗1SU) fH(c)− 1] · 1

SU

= κ∗2cSU = τA2 (f). (44)

This implies that τ∗2 (f) > κ∗2c for all f > 0, or that

τ∗(f ; 0, b) > τA(f ; 0, b) (45)

for all positive f and b.
Finally, note that the additivity assumption of Definition 2

implies that τ∗(f ; a, b) is additive in its second and third
arguments. That is, we may add inequalities (43) and (45)
to conclude that for all nonnegative f , a, and b, that

τ∗(f ; a, b) > κ∗1af + κ∗2b, (46)

or that a necessary condition for PoA(G, τ∗) < PoA(G, τA)
is that τ∗ must charge higher tolls on every edge in every
network.


