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Abstract— In many modern settings, system-level efficiency
depends greatly on the choices of the system’s users. For
example, congestion in traffic networks is often the result of
self-interested choices made by individual drivers or users.
An important research focus involves characterizing road tolls
that bring users’ incentives in line with the system planner’s
goals. Recent results have proposed methods of computing
tolls that rely on very little instance-specific information, e.g.
network topology or users’ value-of-time. Unfortunately, these
existing methodologies require very large tolls, which may be
impractical for a number of reasons. In this paper, we study
price-discrimination as a possible means to social coordination;
that is, we propose a model in which a system planner has
a limited ability to disaggregate a user population into a
number of groups on the basis of users’ value-of-time, and
charge different tolls to different groups. We show that even
without access to problem-specific information, it is possible to
incentivize arbitrarily-low-congestion flows by discriminating
finely enough. Second, we provide a general method of adapting
standard taxation techniques to discriminatory settings and we
analytically characterize the resulting efficiency gains. Finally,
we look specifically at parallel-network, affine-cost routing
games, and show how to derive the congestion-minimizing
discriminatory taxation functions and prove upper-bounds on
the inefficiencies resulting from this method.

I. INTRODUCTION

As engineered systems become more tightly connected
with their end-users, system performance becomes increas-
ingly dependent on individual users’ behavior. It is a
widely-studied fact that self-interested behavior by users
can severely degrade system-level performance [1]–[3]. As
a result, an emerging engineering challenge is the problem
of influencing social behavior (via incentives, information,
or otherwise) to improve system performance [4]–[9].

One setting of interest is that of distributed network
routing problems, in which a unit of traffic must be routed
from some source to some destination across a network with
the goal of minimizing the average travel time of the traffic.
In general, if the traffic is composed of a large collection of
independent agents each making individual routing decisions,
it is a well-studied fact that the emergent social behavior can
have extremely poor efficiency [1]. A common approach for
mitigating this inefficiency is to charge specially-designed
taxes on over-congested roads, hoping to influence the agents
to route more efficiently [11].
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A challenge in this setting is that an incentive-designer
may not have access to a perfect system characterization at
design-time; for example, the exact distribution of network
users’ toll-sensitivities may not be known, or the designer
may desire a degree of robustness to sudden changes in
topology caused by natural disasters. It is thus crucial to
understand the informational dependencies of any incentive-
design methodology. A few examples are: fixed tolls (con-
stant functions of flow on each link) can incentivize any
desired network flow, but require copious amounts of in-
formation [11], [12]; marginal-cost tolls (which are strictly
flow-varying) can incentivize optimal flows without requiring
information on network topology [10], [13]; unbounded so-
called “universal” tolls can incentivize optimal flows without
requiring any instance-specific information [14].

The above results all charge every agent on each edge the
same price. It is almost trivial to see that if the tax-designer
has the ability to charge each agent an individualized price,
he would be able to apply an individualized marginal-
cost pricing scheme and and inherit the optimality given
by [13] while avoiding the unbounded tolls of [14]. This
individualized pricing approach is suggested in [15].

This concept of perfect price-discrimination (also called
first-degree price discrimination [?]) is theoretically appeal-
ing, but likely to be impractical in a real-world setting.
However, it may be possible to perform price-discrimination
at a coarser level; that is, to partition the users into a small
number of groups or “bins” on the basis of their price-
sensitivity and charge a single price to members of each
bin. It seems natural to assume that even coarse price-
discrimination could dramatically improve the efficiency
guarantees, since each agent would be charged a price that is
close to the “correct” price for his particular price-sensitivity.

The concept of classifying agents according to their pref-
erences is not new, and has been studied extensively by
economists for purposes of revenue-maximization. If a seller
lacks direct access to customers’ sensitivities, it may still
be possible to indirectly disaggregate the customer popula-
tion: senior, student, and corporate discounts are common
means to this end [?]. Even in cases such as public util-
ity pricing and internet service providers in which certain
kinds of discriminatory pricing are prohibited by law, price-
discrimination via volume discounts (known as “nonlinear”
pricing) is a common practice [22]. Price discrimination has
also been studied in the context of cloud computing [17] and
the provision of network services [18].

In this paper, we adopt a simple model of price-
discrimination in order to study its possible benefits in social
coordination. In our model, the tax-designer has the ability



to group network users into “bins” according to their price-
sensitivity and charge all members of each bin a single price.
Hopefully, this results in each user paying a price “close”
to that user’s optimal price. We assume that the designer
has no distributional information about users within each bin
(similar to an approach outlined in [19]), but that each user
is correctly categorized, however coarsely.

First, we demonstrate in Theorem 1 that network flows
can be made arbitrarily close to optimal flows by binning
users sufficiently finely. This validates the intuitive concept
that if we charge each user an individualized price, we can
enforce any network flow we desire.

However, Theorem 1 gives no hint as to how many bins are
required to achieve a particular efficiency target; accordingly,
in Theorem 2, we prove a fundamental equivalence between
discriminatory pricing and the tax-designer’s uncertainty
regarding the user population’s price-sensitivity. Here, we
show that discriminatory pricing on a poorly-characterized
population is essentially identical to simple pricing on a well-
characterized population.

Finally, in Theorem 3, we consider the class of affine-cost,
parallel-network routing games and provide a methodology
for deriving the optimal binning and bin taxes for any number
of bins. We also prove bounds on the inefficiencies resulting
from this congestion-minimizing binning.

II. MODEL AND SUMMARY OF CONTRIBUTIONS

A. Routing Game

Consider a network routing problem in which a unit mass
of traffic needs to be routed across a network (V,E), which
consists of a vertex set V and edge set E ⊆ (V × V ).
We call a source/terminus vertex pair (sc, tc) ∈ (V × V )
a commodity, and the set of all commodities C. We assume
that for each c ∈ C, there is a mass of traffic rc > 0 that
needs to be routed from sc to tc. We write Pc ⊂ 2E to denote
the set of paths available to traffic in commodity c, where
each path p ∈ Pc consists of a set of edges connecting sc to
tc. Let P = ∪{Pc}.

A feasible flow f ∈ R|P| is an assignment of traffic to
various paths such that for each commodity,

∑
p∈Pc

fp = rc,
where fp ≥ 0 denotes the mass of traffic on path p. Without
loss of generality, we assume that

∑
c∈C rc = 1.

Given a flow f , the flow on edge e is given by fe =∑
p:e∈p fp. To characterize transit delay as a function of

traffic flow, each edge e ∈ E is associated with a specific
latency function `e : [0, 1]→ [0,∞). We adopt the standard
assumptions that latency functions are nondecreasing, contin-
uously differentiable, and convex. We measure the efficiency
of a flow f by its total latency, given by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(fp), (1)

where `p(f) =
∑
e∈p `e(fe) denotes the latency on path p.

We denote the flow that minimizes the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2)

Due to the convexity of `e, L(f∗) is unique.
A routing problem is specified by the tuple G =

(V,E, C, {`e}). We write the set of all such routing problems
as G. We will often use shorthand notation such as e ∈ G to
denote (e ∈ G : G ∈ G).

To study taxation mechanisms for influencing the emer-
gent collective behavior resulting from self-interested price-
sensitive users, we model the above routing problem as a
non-atomic game. We assign each edge e ∈ E a flow-
dependent, nondecreasing taxation function τe : [0, 1]→ R+.
We characterize the taxation sensitivities of the users in
commodity c with a monotone, nondecreasing function sc :
[0, rc]→ [SL, SU], where each user x ∈ [0, rc] has a taxation
sensitivity scx ∈ [SL, SU] ⊆ R+ and SU ≥ SL ≥ 0 denote
upper and lower sensitivity bounds, respectively. Given a
flow f , the cost that user x experiences for using path p̃ ∈ Pc
is of the form

Jx(f) =
∑
e∈p̃

[`e(fe) + scxτe(fe)] , (3)

and we assume that each user prefers the lowest-cost path
from the available source-destination paths.

In our analysis, we assume that each sensitivity distribu-
tion function sc is unknown; for a given routing problem G
and SU ≥ SL ≥ 0 we define the set of possible sensitivity
distributions as the set of monotone, nondecreasing functions
SG = {sc : [0, rc] → [SL, SU]}c∈C . We write s ∈ SG to
denote a specific collection of sensitivity distributions, which
we term a user population.

In this paper, we study the effects of price-discrimination;
i.e., the practice of charging different prices to different users.
To model this, we assume that we have some ability to group
(or “bin”) users according to their price-sensitivity, and that
we can charge different tolls to different bins. Such a price-
discrimination scheme is comprised of two components: a
collection of bins represented by a partition of the interval
[SL, SU] into m sub-intervals, and a collection of taxation
functions for each group.

We write the collection of bin boundaries as {βi}mi=0,
β0 = SL, βm = SU, with βi < βi+1 ∀ i < m. For each
edge e, we charge all users in bin i (that is, all users whose
sensitivities lie in the interval [βi−1, βi]) a taxation function
τ ie(fe), yielding for each edge e a collection of m distinct
taxation functions {τ ie}mi=1. So that we can make general
statements about binnings as functions of m, we write B to
represent a function that maps each m ∈ N to a particular
partition {βi}mi=0 and taxation functions

{
{τ ie}e∈E

}m
i=1

, and
write Bm to denote a binning for a specific value of m.
Occasionally, we use the notation B1 to denote a trivial
“binning” in which all users are charged the same price.

We model the social behavior resulting from an m-binning
as a Nash flow, or a flow f in which for all users x, where
x belongs to commodity c ∈ C and bin i, we have

Jx(f) = min
p∈Pc

{∑
e∈p

[
`e(fe) + scxτ

i
e(fe)

]}
. (4)



It is well-known that a Nash flow exists for any non-atomic
game of the above form [20]; further, such Nash flows are
essentially unique [13].

For a given routing problem G ∈ G, we gauge the
efficacy of a binning Bm by comparing the total latency
of the resulting Nash flow and the total latency associated
with the optimal flow, and then performing a worst-case
analysis over all possible sensitivity distributions. Let L∗(G)
denote the total latency associated with the optimal flow,
and Lnf(G, s,Bm) denote the total latency of the Nash flow
resulting from binning Bm and user population s. The worst-
case efficiency loss associated with this specific instance is
captured by the price of anarchy which takes the general
form

PoA(G,SL, SU, B
m) = sup

s∈SG

{
Lnf (G, s,Bm)

L∗(G)

}
≥ 1. (5)

B. Summary of Our Contributions

An overview of our contributions is as follows:
Theorem 1:

We define a family of binnings which guarantee op-
timal Nash flows for any routing problem, provided
we discriminate finely enough.

Theorem 2:
We show that for any routing problem, the price of
anarchy resulting from discriminatory pricing is no
worse than the price of anarchy resulting from non-
discriminatory pricing for a better-characterized
population.

Theorem 3:
We derive the optimal discriminatory pricing for
parallel-network, affine-cost routing problems and
affine taxation mechanisms.

Our first result in Theorem 1 is to show that in general, we
can enforce arbitrarily-efficient Nash flows by using a large
number of bins with no instance-specific information; i.e.,
network topology, user sensitivities, or user demands. This is
similar to the approach outlined in [14], in which large tolls
(again requiring no instance-specific information) are used
to enforce highly-efficient Nash flows. However, it should
be noted that the methods of [14] require arbitrarily-large
tolls to enforce optimal flows; in contrast, our discriminatory
pricing can always enforce optimal flows with bounded tolls.

Our second contribution in Theorem 2 is a general char-
acterization result showing that discriminatory pricing on a
poorly-characterized population is in some sense equivalent
to non-discriminatory pricing on a well-characterized popu-
lation. That is, discriminatory pricing effectively reduces the
designer’s uncertainty regarding the users’ price-sensitivity.
This presents the incentive-designer with a powerful tool
for implementing discriminated prices, effectively allowing a
designer to drag-and-drop an undiscriminated pricing design
directly into a discriminated one.

In Theorem 3, we consider these concepts in the context
of a question posed in [14]: “in affine-cost, parallel-network
congestion games, if edge tolls are never allowed to exceed
some upper bound T , what prices are optimal?” Here, given

an upper-bound on edge tolls, we ask what bin boundaries
and tolls minimize the price of anarchy. We investigate the
fundamental equivalence between fine discrimination and
large tolls and analytically characterize the complementary
benefits of the two approaches. We show how to compute the
optimal bin boundaries, and how to charge tolls in each bin
to minimize congestion. Finally, we derive an upper bound
on the price of anarchy resulting from these prices. See
Figure 1 for a depiction of the difference between the generic
approach given in Theorem 2 and the specific, congestion-
minimizing approach from Theorem 3.

III. RELATED WORK

There has been significant research geared towards de-
veloping taxation mechanisms to eradicate the inefficiency
caused by users’ self-interested routing choices; however, to
our knowledge, price-discrimination has not been studied for
this purpose in congestion games. Here, we survey some rele-
vant results pertaining to pricing for congestion-minimization
in network routing, highlighting in particular the tradeoffs
between the sophistication required of a taxtion mechansim
and its corresponding informational requirements.
– Fixed tolls: low sophistication, high information require-
ment: These taxation mechanisms assign tolls that are con-
stant functions of flow (i.e., for any e ∈ G, τe(fe) = qe
for some qe ≥ 0). It is known that if a system-planner
has access to complete information about a routing problem
(e.g., network topology, user demands, exact distribution of
user sensitivities), fixed tolls can be computed which enforce
any feasible network flow [11], [12]. Computing fixed tolls
typically requires the system-planner to possess the above
information, and the robustness of these tolls to mischarac-
terizations of network topology is an open question.
– Marginal-Cost Tolls: medium sophistication, medium in-
formational requirement: Also called “Pigovian” or “conges-
tion” tolls, these guarantee optimal flows wihtout the need
for information regarding network topology, but require edge
taxation functions to be strictly flow-varying. These tolls are
of the following form: for any e ∈ G with latency function
`e, the accompanying taxation function is

τmc (fe) = fe ·
d

dfe
`e(fe), ∀fe ≥ 0. (6)

In [13] it is shown that for any G ∈ G we have L∗(G) =
Lnf (G, s, τmc) provided that all users have a sensitivity
exactly equal to 1. The authors of [4] show that if the user
population is heterogeneous in price-sensitivity, marginal-
cost taxes scaled by

√
SLSU do possess a degree of robust-

ness to mischaracterizations of user sensitivities, but can no
longer guarantee a price of anarchy of 1.
– “Universal” Tolls: High sophistication, low informational
requirement: In [14], it is shown that if a designer possesses
no information regarding network topology, user sensitivities,
or user demands, optimal network flows can be enforced –
if and only if the tax-designer levies arbitrarily-large tolls.

In contrast to the network-routing literature, the economic
literature on price-discrimination is concerned largely with
profit-maximization. It is well-known that a monopolist can



maximize profits with “first-degree” (also called “perfect”)
price-discrimination, in which prices are individualized for
every customer [?], provided that goods cannot be re-sold.
Another commonly-studied form of price-discrimination is
often termed “second-degree” price discrimination or nonlin-
ear pricing, in which different prices are charged for different
quantities of a good or service [21], essentially inducing
customers to partition themselves into different sensitivity
classes. In this paper, we study a coarse version of first-
degree discrimination, under the common assumption that
perfect price-discrimination is difficult in practice.

IV. OUR CONTRIBUTIONS

A. Universal Discriminatory Pricing

As discussed in the previous section, the state of the art
gives us no obvious way to enforce optimal flows without
either significant quantities of information or excessively-
high tolls. In this paper, we show that price-discrimination
may provide a third way. We begin with our most general
result, in which we present a family of binnings which
enforce arbitrarily-optimal flows for any routing problem.
This optimality is asymptotic in the number of bins, which
implies that it is always possible to enforce Nash flows
within ε of optimal with a finite number of bins.

Theorem 1: Define B as the family of binnings whose bin
sizes shrink to 0 as m approaches infinity; for any Bm ∈ B,1

lim
m→∞

(
βmi − βmi−1

)
= 0, (7)

and the bin taxation functions of Bm ∈ B satisfy the
following: for each bin i choose any κmi ∈

[
1
βm
i
, 1
βm
i−1

]
and

let edge tolls be given by

τ ie (fe) = κmi fe ·
d

dfe
`e(fe). (8)

Then for any G ∈ G and any binning Bm ∈ B,

lim
m→∞

PoA (G,SL, SU, B
m) = 1 (9)

and for all m, all tolling functions are bounded by
maxe `

′
e(1)/SL.

Note that Bm need not depend on information about user
sensitivity distributions or demands, and may be completely
topology-independent.

Proof: For each m ∈ N, let binning Bm be defined
with bin boundaries according to (7) and bin tolls according
to (8), so that Bm ∈ B. For any routing problem G ∈ G and
price-sensitivities s ∈ S, let fm =

(
fmp
)
p∈P denote the Nash

flow resulting from the binning Bm. For each commodity c,
let Pmc ⊆ Pc denote the set of paths that have positive flow
in fm. For any p ∈ Pmc , there must be some user x ∈ [0, rc]
using p; suppose this user has sensitivity scx ∈

[
βmi−1, β

m
i

]
,

then the cost experienced by this user is given by

Jx (f
m) =

∑
e∈p

[
`e(fe) + scxκ

m
i fe ·

d

dfe
`e(fe)

]
.

1For the sake of precision, in this theorem we make explicit the depen-
dence of each bin boundary on m by writing βm

i .

Write `∗e(fe) = fe · d
dfe
`e(fe); then for any other path

p′ ∈ Pc \ p, user x must experience a lower cost on p than
on p′, or

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤ scxκmi

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

.
(10)

Therefore, for any m ≥ 1, fm must satisfy some set of
inequalities defined by (10). By definition,

βmi−1/β
m
i ≤ scxκmi ≤ βmi /βmi−1,

so (7) implies that limm→∞ scxκ
m
i = 1. Thus, because all

functions in (10) are continuous, fm converges to a set F ∗

of feasible flows that satisfy

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

 (11)

for all c, all p ∈ P∗c , and p′ ∈ Pc, where P∗c ⊆ Pc
is some subset of paths. Inequalities (11) (combined with
the feasibility constraints on f ) specify a Nash flow for G
for a unit-sensitivity population with marginal-cost taxes as
defined in (6); any such Nash flow must be optimal [13];
that is, any f ∈ F ∗ is a minimum-latency flow for G. Thus,
since L(f) is a continuous function of f ,

lim
m→∞

L (fm) = L∗ (G) , (12)

obtaining the proof of the theorem.

B. General Effect of Discriminatory Pricing

Theorem 1 showed that we can enforce low-congestion
routing using price-discrimination, but it gave no hint as
to how many bins are needed or how the price of anarchy
evolves as a function of m. This is the purview of Theorem 2,
in which we show that there is a general equivalence be-
tween fine discrimination and well-characterized sensitivity
distributions. Here, we show that the price of anarchy result-
ing from discriminatory pricing for a poorly-characterized
population is no worse than the price of anarchy resulting
from non-discriminatory pricing for a well-characterized
population.

Theorem 2: Suppose for routing problem G that some
taxation mechanism τ(SL, SU) is known to have price of
anarchy PoA (G,SL, SU). For any S′L > 0, let S′U =

S′L (SU/SL)
1/m, and define the bin boundaries of Bm by

βi = S
m−i
m

L S
i
m

U . (13)

Then if the bin taxes of Bm are given by τi = S′L/βi−1 ·
τ(S′L, S

′
U), the following holds:

PoA (G,SL, SU, B
m) ≤ PoA

(
G,S′L, S

′
L

(
SU

SL

)1/m

, B1

)
.

(14)

In particular, we wish to point out two important facts
regarding Theorem 2. First, it is natural to evaluate the uncer-
tainty of our user-sensitivity estimate by the sensitivity ratio



SU/SL: the higher the ratio, the less certainty we possess.
Theorem 2 shows us that m-binning reduces the effective
sensitivity ratio to (SU/SL)

1/m. Thus, by applying price
discrimination, we can dramatically reduce our uncertainty
regarding the price-sensitivity of network users.

Second, note that the guarantees of Theorem 2 are inde-
pendent of the specific taxation mechanism used; thus, this
result can be used as a design tool to take any off-the-shelf
taxation mechanism and apply it to a discriminatory setting.

However, it is important to understand that the price of
anarchy provided by Theorem 2 need not be optimal in
any sense. If a binning is designed more precisely with a
particular taxation methodology in mind, it may be possible
to guarantee even better network efficiencies. This is the
focus of Theorem 3, in which we look at a restricted class
of routing problems and taxation mechanisms and derive the
optimal binning in that specific setting.

Proof: Consider routing problem G and population
s; design bin boundaries and charge taxes according to the
theorem statement. Note that for every i, (13) implies that

βi
βi−1

=
S′U
S′L

=

(
SU

SU

)1/m

; (15)

that is, each bin has the same “width” as the entire emulated
population s′ ∈ [S′L, S

′
U]. Consider the cost experienced on

any edge e by some agent x who happens to belong to bin
i:

Jx(f) = `e(fe) + κisxτe(fe). (16)

Inserting the definition of κi in the above, we obtain

Jx(f) = `e(fe) +
sxS

′
L

βi−1
τe(fe). (17)

But sx ∈ [βi−1, βi] implies that

`e(fe) + S′Lτe(fe) ≤ Jx(f) ≤ `e(fe) + S′Uτe(fe), (18)

or that agent x sees the exact same cost as he would if he
were a member of population s′. Since this is true of every
agent for every edge in every bin, it must be true that every
Nash flow resulting from these binned tolls corresponds
exactly to a Nash flow resulting from the nominal tolls {τ}
and some sensitivity distribution in [S′L, S

′
U]. In particular,

no binned Nash flow can have higher total latency than the
worst-case flows for populations in [S′L, S

′
U]. Since S′U/S

′
L =

(SU/SL)
1/m, the theorem conclusion follows.

C. Optimal Binning for Simple Routing Problems

The principles proved in Theorem 2 are compelling, but
in general may not result in optimal binning. That is, when
investigating a restricted class of games, it may often be the
case that we can design pricing that significantly outperforms
the pricing described by Theorem 2.

In this section, we restrict attention to the class of parallel-
network, affine-cost routing games. For the following results,
let Gp ⊆ G represent the class of all single-commodity,

parallel-link routing problems with affine latency functions.
That is, for all e ∈ Gp, the latency function satisfies

`e(fe) = aefe + be (19)

where ae and be are non-negative edge-specific constants.
“Single-commodity” implies that all traffic has access to all
network edges. Furthermore, we assume that every edge has
positive flow in an un-tolled Nash flow.2

Following from [14], we endeavor to apply optimal
bounded tolls to this game which have no dependence on
the specific network to which they are applied. We want to
define a general rule for assigning edge taxation functions in
which each edge’s taxes depend only on that edge’s conges-
tion properties. Efficiency guarantees resulting from such a
network-agnostic taxation mechanism are thus independent
of specific network topologies, meaning that they are robust
to edge deletion or sudden changes in topology.

Definition 1: The Bounded Affine Taxation Mechanism
assigns tolls of

τe(fe) = κ1aefe + κ2be, (20)

where ae and be are the latency function coefficients in (19)
and κ1 ≤ κmax and κ2 ≤ κmax are non-negative edge-
independent constants upper-bounded by some κmax ≥ 0.

In [14], it is shown that for non-discriminatory pricing, this
taxation mechanism is optimal over the space of all bounded
network-agnostic taxation mechanisms. Thus, it seems a
natural mechanism to study in our discriminatory setting.3

Now, in Theorem 3, we show how to compute optimal
bin boundaries and affine taxation function coefficients that
minimize congestion for any κmax. Furthermore, we derive
an upper bound for the price of anarchy that is independent
of the number of network links and holds for any SU.

Theorem 3: For any G ∈ Gp, for any set of bin bound-
aries {βi}mi=1, the optimal bounded affine tolling coefficients
are given by

κi1 = κmax (21)

κi2 = max

{
0,

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

}
. (22)

Furthermore, the congestion-minimizing bin
boundaries {βi}mi=1 can be found by solving Optimization
Problem (P) (see Figure 2). Let λ = κmaxSL

1+κmaxSL
. If

κmax ≤ 1/SL, let µ = SLκmax; otherwise, let µ = 1. Then
for all SU ∈ [SL,∞] and this binning Bm,

PoA(Gp, SL, SU, B
m) ≤ 4

3

(
1− min{λ1/m, µ}(

1 + min{λ1/m, µ}
)2
)
.

(23)

2This is essentially a regularity condition that prevents the creation of
unrealistic, highly-pathological networks; e.g., if a network contains an
edge with a very high constant latency function, tolling functions could
cause highly-sensitive users to divert to this edge, causing gross network
“inefficiencies.” Note that we can always assign infinite tolls to such unused
edges to ensure that the regularity condition is met.

3However, note that in this paper we do not prove the optimality of affine
tolls over the space of all taxation mechanisms, we merely prove the optimal
choices of κ1 and κ2.



Optimization Problem (P)

Max
{βi}mi=1

γL

s.t. γL ≤
κmax + 1/βi
κmax + 1/βi−1

∀i ∈ {1, . . . ,m} (24)

βi−1 ≤ βi ∀i ∈ {1, . . . ,m}
β0 = SL

βm = SU

β1 ≥
1

κ2maxSL
. (25)

Fig. 1. As proved in Theorem 3, the solutions {βi}mi=1 to this optimization
problem are congestion-minimizing bin boundaries for any routing problem.

A few words are in order regarding the price of anarchy
bound in (21): First, this bound is tight for cases when SU =
∞; i.e., there is no upper bound on the price-sensitivities
of the agents. When SU is finite, the tools of Lemmas 3.1
and 3.2 can be used to determine an exact price of anarchy
once the optimal bin boundaries have been derived. We are
not aware of a convenient closed-form expression for the
exact price of anarchy for finite SU, but in Figure 1 we show
that even for relatively low values of SU, the gap between
the finite-SU and infinite-SU prices of anarchy is not large.

Second, since we are dealing with bounded tolls, whenever
κmax < 1/SL, it is not possible to guarantee perfectly-
optimal network flows, even for arbitrarily-high m. This is
because when κmax is too low, a homogeneous sensitivity
distribution with sx ≡ SL cannot be effectively influenced,
and after a point, finer binning cannot remedy this. This is
captured in the theorem statement by the parameter µ, which
prevents extremely-fine binning from improving the price of
anarchy when κmax is too low.

See Figure 3 for a depiction of the congestion-minimizing
bin boundaries for several values of m. In Figure 1, we
depict the price of anarchy as a function of m, contrasting
the guarantees provided by Theorems 2 and 3.

As a first step towards proving Theorem 3, we introduce
Lemma 3.1, in which we present a powerful tool with
which we can analyze the price of anarchy of parallel affine
congestion games under various types of tolls.

Lemma 3.1: Suppose that there exists a function γ :
[0, 1] → [γL, γU ] with 0 ≤ γL ≤ 1 and γU ≤ 1/γL such
that in every G ∈ Gp, the cost function of user x on edge e
is given by

Jex(fe) = (1 + γ(x)) aefe + be. (26)

Then the price of anarchy of Gp is tightly upper-bounded by

PoA(Gp) ≤ 4

3

(
1− γL

(1 + γL)
2

)
. (27)

Proof: The simplest proof of this relates (24) to the
analysis of scaled marginal-cost tolls presented in [4]. There,
in Lemma 1.2, the authors show that for κ ≤ 1/

√
SLSU, of

all the Nash flows induced by edge tolls τe(fe) = κaefe,

Fig. 2. Optimal bin boundary locations computed by Optimization Problem
(P) for m ∈ {1, . . . , 10}, with κmax = SL = 1 and SU = 10. These
correspond exactly to the price of anarchy plot shown in Figure 1.

the worst congestion always occurs for a homogeneous
population in which all users’ sensitivities are equal to SL.
To prove Lemma 3.1, we shall compute a virtual sensitivity
distribution sv and tolling coefficient κv which will induce
Nash flows that precisely mimic the behavior of Nash flows
induced by γ (that is, Nash flows for cost functions (24)).

Given the γ function of the statement of Lemma 3.1, let
κv = 1, and let svx = γ(x) for all x ∈ [0, 1]. By this
definition, any Nash flow induced by γ has a correspond-
ing marginal-cost-tolled Nash flow induced by a sensitivity
distribution given by sv; we can accordingly use marginal-
cost toll arguments to argue about γ-induced Nash flows. The
upper and lower bounds of our virtual sensitivity distribution
are thus given by SvL = γL and SvU = γU , respectively.
By the properties of γL and γU , it is always true that
κv ≤ 1/

√
SvLS

v
U, so the congestion-maximal Nash flows

occur for a virtual homogeneous population with all users’
sensitivities equal to SvL.

This implies that a Nash flow with all cost functions
equal to Jex(fe) = (1 + γL) aefe + be will have higher total
congestion than a Nash flow induced by γ, and we can use
techniques from [4] (namely, Lemma 1.3) to derive (25).
The tightness of the bound in (25) is due to the constructive
nature of the proofs from [4].

Next, in Lemma 3.2, for any arbitrary bin boundaries, we
derive specific tolling coefficients which should be charged
in each bin.

Lemma 3.2: For any G ∈ Gp, for any bin boundaries
{βi}, the optimal tolling coefficients can be obtained for each
bin i by choosing

κi1 = κmax (28)

κi2 = max

{
0,

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

}
. (29)

With these coefficients, in the language of Lemma 3.1, it
holds that

γL = min
i

{
min

{
βi−1κmax,

κmax + 1/βi
κmax + 1/βi−1

}}
. (30)

Proof: Since uniform scaling by a constant factor does
not change underlying Nash flows, we can say without loss
of generality that the effective cost to agent x ∈ [βi−1, βi]



Fig. 3. Comparison between the price of anarchy resulting from the generic
price-discrimination approach of Therorem 2 (dashed line), the specific
congestion-minimizing price-discrimination approach of Theorem 3 (solid
line), and the general upper-bound given in Theorem 3 (dash-dot line). For
the first two curves, we apply affine tolls to the class of parallel-network,
affine-cost congestion games, with κmax = SL = 1 and SU = 10. The
dash-dot line represents the general upper-bound proved in Theorem 3 that
holds for this value of κmax and SL, and any SU. Note how close this
upper bound is to the instance-specific solid line for m > 1.

in bin i for edge e is given by

Jx(fe) =
1 + κi1sx
1 + κi2sx

aefe + be, (31)

and when κi1 ≥ κi2, it is evident that4

1 + κi1βi−1
1 + κi2βi−1

aefe+be ≤ Jx(fe) ≤
1 + κi1βi
1 + κi2βi

aefe+be. (32)

For each i, for each x ∈ [βi−1, βi], define γ(x) , sx(κ
i
1−κ

i
2)

1+κi
2sx

.
Then any agent x ∈ [0, 1] has the following cost for edge e:

Jex(fe) = (1 + γ(x)) aefe + be, (33)

just as in (24). It is evident that in accordance with the
assumptions of Lemma 3.1 we have

γ(x) ≥ γL , min
i
{βi−1(κi1 − κi2)/(1 + κi2βi−1)} and

γ(x) ≤ γU , max
i
{βi(κi1 − κi2)/(1 + κi2βi)} (34)

Equation (25) in Lemma 3.1 shows that we minimize the
price of anarchy by maximizing γL, subject to γL ≤ 1/γU.

First, assume we are given a fixed, arbitrary feasible set of
bin boundaries {βi}, a nonnegative value of κi1 for each bin,
and that κi2 can take any real value. Because the problem
is otherwise unconstrained, the constraint γL ≤ 1/γU will
bind, or γL = 1/γU. Suppose γL is maximal with respect to
the relevant constraints, and that bin i is the source of γL;
i.e.,

γL =
βi−1(κ

i
1 − κi2)

1 + κi2βi−1
. (35)

Simultaneously, κi2 must satisfy the following (the only other
constraint on κi2):

βi(κ
i
1 − κi2)

1 + κi2βi
≥ γU. (36)

It is clear that γL is decreasing in κi2; if γL is indeed optimal,
κi2 must be binding the constraint in (37). Thus, a single bin

4In [14], it is shown that assuming κi1 ≥ κi2 is without loss of generality.

generates both γL and γU, and since γL = 1/γU, we have
that

βi−1(κ
i
1 − κi2)

1 + κi2βi−1
=
βi(κ

i
1 − κi2)

1 + κi2βi
, (37)

which implies that

κi2 =

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

(38)

Now, if we re-introduce the constraint that κi2 ≥ 0, we find
that it may no longer be possible to satisfy (39), but that since
γL is decreasing in some κi2, simply saturating κi2 at 0 still
yields a maximal γL while respecting γL ≤ 1/γU. Thus, for
any binning, choosing κi2 according to (27) is sufficient to
ensure an optimal price of anarchy.

Finally, with (27), it is simple to show that γL is non-
decreasing in each of the κi1 coefficients, so letting κi1 =
κmax suffices to minimize the price of anarchy.

Proof of Theorem 3: First, note that Optimization Prob-
lem (P) is largely a re-statement of Lemmas 3.1 and 3.2,
with the sole exception of constraint (23). By the definition
of γL in Lemma 3.1, it is clear why we desire to maximize
γL. By the fact regarding γL in Lemma 3.2, it is clear that
any optimal binning will satisfy constraint (22).

The only curious element of the optimization problem is
constraint (23), which we show here does not reduce the
optimality of the solutions, even when the constraint is active.
This constraint plays a role in cases when κmax is small, and
avoids the non-smoothness of κi2 in (27) and γL in (28). Let
{β∗i } be an optimal solution to the optimization problem
in which constraint (23) binds. Then β∗1 = 1/(κ2maxSL), or
κmax = 1/

√
SLβ∗1 . Note that at this point, according to (27),

κ12 = 0, and this is the precise breakpoint at which the
expression for κ12 “switches over” from 0 to the non-constant
function of κmax. Thus, the first effect of constraint (23) is
that it ensures that κ12 will always be a smooth function of
the bin boundaries.

Second, considering (28), note that β1 = 1/(κ2maxSL) is
also the precise breakpoint at which γL “switches over” from
βi−1κmax to (κmax + 1/βi)/(κmax + 1/βi−1). Thus, the
second effect of constraint (23) is that it ensures that γL itself
will always be a consistent function of the bin boundaries.

To see that including (23) does not reduce the optimality
of solutions, note that if it were true that β∗1 < 1/(κ2maxSL),
it would also necessarily be true that the price of anarchy
would simply be determined by γL = SLκmax. Thus, β1
has no impact on the price of anarchy until it reaches the
1/(κ2maxSL) threshold.

The essential uniqueness of the solution of (P) follows
from the fact that the only way to increase γL is to raise the
lower-boundary of some bin, which simultaneously raises the
upper-boundary of the next-lower bin, serving to decrease
γL. If (23) is active at an optimizer of (P), {βi}mi=2 are not
unique, but all optimizers yield the same price of anarchy.

To show the price of anarchy bound, first note that for a
fixed m and SL, the price of anarchy will always be increas-
ing in SU, since this represents increasing the sensitivity-



uncertainty of our population. Our arguments thus involve
investigating the limiting price of anarchy as SU →∞.

First, suppose that κmax < 1/SL, so that for some
binnings we activate constraint (23). When (23) is active,
the price of anarchy is determined only by the lowest-index
bin; in the language of Lemma 3.1, γL = SLκmax. This can
be considered a worst-case situation, so we include it in the
price of anarchy expression (21) via the µ argument.

However, even when κmax < 1/SL, it is possible that
constraint (23) will not be active, so we must consider the
case when constraint (22) is active. In this case, each bin has
the same “width,” or for i = (m− 1), it is true that

γL =
κmax + 1/βm−1
κmax + 1/βm−2

=
κmax + 1/SU

κmax + 1/βm−1
.

In general, closed-form expressions for bin boundaries re-
sulting from this are quite complicated, but considering a
high-SU case can simplify things considerably:

lim
SU→∞

γL =
κmax + 1/βm−1
κmax + 1/βm−2

=
κmax

κmax + 1/βm−1
. (39)

Since the above is true for any m > 1, we can use it to
inductively deduce the structure of an optimal binning for
any positive SL and infinite SU. First, letting m = 2, fixing
β1 implies the following unique value for SL:

SL = κmax/
(
(κmax + 1/β1)

2 − κ2max

)
.

Inductively, it can be shown that for arbitrary m and fixed
βm−1, the unique implied value of SL is given by

SL = κm−1max / ((κmax + 1/βm−1)
m − κmmax) .

Solving this for βm−1, we have that for any SL, κmax, m,
and infinite SU,

βm−1 =

(
κmax

[(
1 + κmaxSL

κmaxSL

)1/m

− 1

])−1
. (40)

This βm−1 represents the highest bin boundary in an opti-
mal binning for an infinite-SU population. To compute the
corresponding γ∞L , we can simply substitute (30) into (29)
and simplify:

γ∞L =

(
κmaxSL

1 + κmaxSL

)1/m

, (41)

the source of λ in the theorem statement. Any finite SU will
yield a better price of anarchy than an infinite one, so for
any game, γL ≥ min{κmaxSL, γ

∞
L }, so by Lemma 3.1 the

expression (21) is valid for any SU.

V. CONCLUSIONS

The model of price-discrimination we introduce in this
paper demonstrates that price-discrimination may be a pow-
erful tool for influencing social behavior in systems that are
not perfectly characterized. Of course, our model represents a
simplified view of discriminatory pricing, and future research
includes a study of the obstacles to a successful implementa-
tion. Among these is the issue of how a designer might obtain

a binning; even for a small number of bins, agents may have
an incentive to mis-represent their sensitivities, since doing
so could result in paying lower taxes. Another interesting
(and potentially troubling) issue is that of fairness in price-
discrimination; one aspect of the “optimal” discriminatory
prices of Theorem 3 is that low-sensitivity agents’ absolute
costs are much lower than those of high-sensitivity agents.
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