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Abstract—The network routing literature contains many re-
sults showing that tolls can be used to improve the efficiency
of network traffic routing. These results typically require toll-
designers to have an exact characterization of the network and
user population. We relax this strict informational dependence
and present a simple setting in which scaled marginal-cost tolls
can be guaranteed to provide significant efficiency improvements
over the un-tolled case, even if the toll-sensitivities of the users
are unknown.

I. INTRODUCTION

It is widely known that uninfluenced social systems can
exhibit suboptimal system-level performance. Characterizing
this inefficiency, which is broadly referred to as the price of
anarchy [2], is a highly active research area in many disci-
plines including network resource allocation [3], distributed
control [4], traffic congestion [5], and others. This inefficiency
has prompted new research questions geared at influencing
social behavior to improve system performance [1], [6]—[8].

In this paper we focus on the design of an incentive
mechanism for influencing social behavior for a simple class
of congestion games.

Specifically, we consider a routing problem where a unit
mass of traffic needs to be routed across a parallel network
consisting of edges with affine latency functions. Finding
the flow that minimizes the total latency in the network is
straightforward if a system-planner has direct control over all
routing decisions. However, in social systems such as road
traffic routing, individual users make local routing decisions in
response to their personal objectives. Accordingly, we model
the routing problem as a non-atomic congestion game where
the unit of traffic can be viewed as a continuum of users,
each controlling an infinitesimally-small amount of traffic and
seeking to minimize its own experienced latency. Here, we
adopt the popular viewpoint that a Nash flow characterizes the
emergent collective behavior in such systems.

The pioneering work of Arthur Pigou in [9] demonstrated
that the total latency associated with Nash flows could be
substantially worse than the optimal total latency [10]. In fact,
for affine-cost networks, a Nash flow can have a total latency
up to 33% higher than the optimal total latency [11]; that
is, the price of anarchy is 4/3. With these inefficiencies in
mind, researchers have focused on the use of monetary taxes
to influence the underlying Nash flows. Typically, the efficacy
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of a taxation methodology is gauged by analyzing the Nash
flow for a new routing game where the self-interested users
seek to minimize a linear combination of latency and monetary
tax. This has been a rich field of study, and many researchers
have provided positive results, particularly in cases when the
underlying system is characterized perfectly [12]-[14]. For
example, given a complete characterization of network top-
ology, latency functions, user demands, and user sensitivities,
a system-designer can levy taxes which induce exactly-optimal
Nash flows. Another example of network-dependent tolls can
be found in [15], where the authors investigate the impact of
tolls in affine-cost, parallel networks, and present a taxation
mechanism that improves efficiency compared with un-tolled
levels, even when the total traffic rate is unknown. There has
been little research on the robustness of network-dependent
tolls to unexpected changes in network topology or latency
functions; a notable exception to this can be found in [16].

In contrast to the above network-dependent results, another
important avenue of research is what we term the “network-
agnostic” approach. In this approach, the system-planner as-
signs tolls to each network edge that depend only on the
congestion properties of that particular edge; tolls cannot
depend on the overall network topology. The most common
example of this is known as a marginal-cost toll, a particular
style of flow-varying toll which is known to induce optimal
Nash flows without requiring the designer to have knowledge
of the specific network topology [17], [18]. In [19], the
authors study efficiency guarantees resulting from “restricted”
marginal-cost tolls, i.e., marginal-cost tolls which saturate
at a given upper bound. Unfortunately, marginal-cost tolls
have largely only been studied in cases in which all network
users share a common toll-sensitivity (or value-of-time). These
tolls’ robustness to variations or mischaracterizatons of user
sensitivity is heretofore unknown.

In this paper, we recognize that the applicability of a
given taxation mechanism hinges not only on its performance
guarantees, but also on its robustness to variations or mis-
characterizations of the underlying system. Our main contri-
bution is to identify the optimal scaled marginal-cost taxation
mechanism in terms of its robustness to mis-characterizations
of user sensitivities, and we derive tight efficiency guarantees
for this optimal scaled marginal-cost taxation mechanism that
hold for any number of network links or distribution of user
tax-sensitivities.

II. MODEL AND RELATED WORK

Consider a routing problem in which a unit mass of traffic
needs to be routed across a parallel network consisting of
a source node, a destination node, and a set of edges F
connecting the source to the destination. A feasible flow over



the network is characterized by a collection of edge flows
[ =Afe}lecp € A(E) where f. > 0 denotes the flow on
edge e and A(FE) denotes the simplex over the set E; i.e.,
> eci fe = 1. To characterize transit delay, each edge e € E
is associated with a specific affine latency function of the form

Ee(fe) = aefe + be, (D

where a. > 0 and b, > 0 are edge-specific constants. We
measure the efficiency of a flow f by the total latency, given
by

L) =D fe-Le(fe),

ecE

2

and we denote the flow that minimizes the total latency by
f* € argmingepn gy L(f). We specify a particular parallel
network by the tuple G = (E, {{.}.cr), and write the set of
all parallel networks as G.

In this paper we study taxation mechanisms for influencing
the emergent collective behavior resulting from self-interested
price-sensitive users. To that end, we model the above routing
problem as a non-atomic congestion game where each edge
e € I is assigned a flow-dependent taxation function 7. :
R*T — R and each user z € [0,1] has a taxation sensitivity
sz € [SL,Suy] € Rt where Sy > S > 0 denote upper and
lower sensitivity bounds, respectively. Given a flow f, the cost
that user x experiences for using edge ¢ € FE is of the form

Jo(f) = La(fe) + same(fe)- 3)

Note that the sensitivity s, is the reciprocal of agent z’s value-
of-time; as such, we view this quantity as fixed and not delay-
dependent. We call a flow f a Nash flow if for all users x €
[0,1] we have

J(f) = gél}:} {le(fe) + saTe(fe)} -

It is well-known that a Nash flow exists for any non-atomic
congestion game of the above form [20].

We study network-agnostic taxation mechanisms, in which
a system-designer essentially commits to a taxation function
for each potential network edge, and any network realization
merely employs a subset of these pre-defined taxation func-
tions. Simply put, an edge’s taxation function is independent of
any other edge’s congestion properties or location in the net-
work. A commonly-studied network-agnostic taxation mech-
anism is the marginal-cost (or Pigovian) taxation mechanism,
which is of the following form: for any edge e with latency
function (1), the associated marginal-cost taxation function is

d
dfe
In [17] the author shows that for any G € G, irrespective of
the underlying network structure, Nash flows resulting from

marginal-cost taxes are optimal, provided that all users share
a common known sensitivity.

“4)

7o (fe) = fe - le(fe) = aefe, Yfe > 0. @)

III. OUR CONTRIBUTIONS

In this paper, we study the efficacy of a network-agnostic
taxation mechanism for situations in which both the number
of links and the users’ price-sensitivities are unknown or

time-varying We study tolls of the following form: for any
scalar coefficient x > 0, the scaled marginal-cost taxation
mechanism, denoted by 75™¢(k), assigns taxation functions
d
dfe
To formalize a notion of worst-case efficiency guarantees,
we define the set of possible sensitivity distributions for the
users as 8 = {s : [0,1] — [SL, Su]}. Let L*(G) denote the
total latency associated with the optimal flow, and £ (G, s, 7)
denote the total latency associated with the Nash flow resulting
from taxation functions 7 and sensitivity distribution s € 8.
We define the price of anarchy of the scaled marginal-cost
taxation mechanism with respect to both uncertainity in the
underlying network and the users’ price-sensitivity, i.e.,

{(“a )=

T:mc(fe;"ﬁ) :’i'fe' ge(fe) :'%aefea vfe > 0.

PoA(G, 8, 7"¢(k)) =

sup
s€8,Geg
(6)

Our main contribution is identifying how the choice of
impacts the above price of anarchy, and we identify the optimal

x and the resulting efficiency guarantees.

Theorem 1. For any network G € G with flow on all edges in
an un-tolled Nash flow', and any s € 8, any scaled marginal-
cost taxation mechanism reduces the total latency of any Nash
flow when compared to the total latency of any Nash flow
associated with the un-tolled case, i.e., for any k > 0

LG, s, 75m(r)) < LM (G, 5,0) 2 @)

Furthermore, the unique optimal scaled marginal-cost tolling
mechanism uses the scale factor
1
k' = ——= = argmin {PoA(G,8,7°™°(k))}.
G el {PoA( (r))}
Finally, the price of anarchy resulting from the optimal scaled
marginal-cost taxation mechanism is

®)

\/SL/Su
(1+m>2

Note that the optimal scale factor x* is independent of the
number of network links and the agent sensitivity distribution?,
so tolls can be computed locally at each edge without requiring
global network information. This low information-dependence
places our work in contrast to many existing results, e.g. [12],

POA(Q,&TS“‘C(/@*)):% 1— S%. )

IThis is essentially a regularity condition which prevents the creation of
badly-designed networks with artificially-high efficiency losses: For example,
consider a network which includes an edge e that has a constant latency
function, i.e., fe(fe) = be, where be is sufficiently large so that f2¢ =
0 in the resulting un-tolled Nash flow. For such scenarios, levying tolls on
the alternative edges could cause highly-sensitive users to deviate to edge e,
thereby causing large network inefficiencies. Note that if such an un-used
(and accordingly inefficient) edge does exist, we may levy a very large toll
on it (effectively removing it from the network) and obtain our desired well-
behaved situation.

2If the un-tolled Nash flow for a particular network is optimal, any Nash
flow resulting from marginal-cost tolls is also optimal. Thus, all results in the
paper assume that £ (G, s,0) > L£*(G).

3This price of anarchy bound is also unchanged by increases in the total
mass of traffic flowing through the network; see Claim 1.1.1.
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Fig. 1. Left: An illustration of the price of anarchy bound from Theorem 1,

with optimal toll scalar k = (SLSU)_l/Q. Since the bound depends only
on Sp, /Sy, this plot neatly expresses the effect of model uncertainty on toll
effectiveness. As expected, we inherit the canonical price of anarchy of 4/3
when Sy,/Su = 0 (i.e., we may be entirely unable to influence behavior). At
the other extreme, when St,/Suy = 1 (i.e., we know sensitivities perfectly)
we inherit the canonical price of anarchy of 1. Our result continuously bridges
the gap between the two extremes. Right: The price of anarchy (with a fixed
ratio of St,/Sy = 0.1) with respect to toll scalar . Note that the price of
anarchy is minimized at the inverse of the geometric mean of Sy, and Sy .

that can guarantee higher efficiencies only at the expense of
strict informational requirements. See Figure 1 for plots of the
price of anarchy with respect to various parameters.

Theorem 1 Proof: We begin with some notation before
delving into the proof of Theorem 1. Throughout, it will
often be convenient to focus on special classes of sensitivity
distributions. To that end, let S,,, C § denote the set of user
sensitivity functions that have a range consisting of at most m
sensitivity values, i.e., Uwe[o,l]sml < m.

Let 7(G,8,7) C R™ denote the set of Nash flows asso-
ciated with all routing games (G,s,7) where s € S. Note
that we are representing Nash flows anonymously: a particular
™ e F(G,8,7) describes merely how many agents are on
each edge, not which agents are on each edge. For brevity, we
often express 7"¢(k) as merely x.

The proof of Theorem 1 involves proving that the scaling
coefficient x > 0 that mininizes the price of anarchy for
heterogeneous populations can be determined by analyzing
the scaling coefficient that minimizes the price of anarchy
for homogeneous populations, a much smaller class of games.
This reduction then facilitates a straightforward computation
of the optimal coefficient. The complete proofs of Lemmas 1.1
and 1.3 can be found in the Appendix.

We often make use of a special Nash flow for a discrete
distribution: we call a Nash flow in which every user is indif-
ferent between at least two edges a minimally-indifferent Nash
flow. We write the set of minimally-indifferent Nash flows for
8, for a given taxation mechanism 7 as F™(G, §,,, 7). Note
that on a network with n links, there are at most (n — 1)
sensitivity types in a minimally-indifferent Nash flow.

First, Lemma 1.1 proves that a Nash flow on an n-link
network for any heterogeneous population can be represented
as a minimally-indifferent Nash flow for a population with
only (n — 1) sensitivities. Thus, we can assume without loss
of generality that any Nash flow is minimally-indifferent.

Lemma 1.1. For any network G € G consisting of n links,
with n > 2, and k > 0,

F(G,8,k) = F™ (G, 8,_1,kK). (10)

Second, Lemma 1.2 shows that we may further refine our
search to the set of homogeneous sensitivity distributions. In
particular, when sk < NS the worst-case total latency is
realized by Nash flows for a homogeneous population with
sensitivity St..

Lemma 1.2. Let k < L Then for any G € G,

VSLSu®
mausxﬁnf (G,s,k) = L (G, S, k). (11)
se

Proof. This proof hinges on a change of variables which
allows us to linearly parameterize the set of all Nash flows
on a network by a set of (n — 1) sensitivity values.

For any G € G, any minimally-indifferent Nash flow f™ €

F™ (G, 8,1, ) with sensitivity values {s;}7~}' satisfies

1+ kKs;
for each pair of adjacent edges (for details, see (35) in
the proof of Lemma 1.1 in the Appendix). Note that the
expression in (12) is linear in f™f, but nonlinear in {s;}.
However, if we define a new variable z; = H—% and let
2= (21,...,2n-1)", we can write (12) as a linear expression
in both f"f and 2.

The (n — 1) equations obtained from (12) combined with
the flow-conservation constraint » ., frf =1, yield the n-
dimensional linear system

Pt =r4+Qz

where P € R™ ™ and Q € R™*"~! are constant matrices
depending only on G, and » € R™*! is the unit vector with 1
as the n-th element.

It can easily be verified that P must be full-rank, so we
can write a Nash flow as a function of z by inverting P and
defining

aif™ —aip fM = (12)

13)

f(2) = R+ Mz, (14)
where R € R™ and M € R™*"~1 are defined as
R=P 1y M =P 1Q. (15)

The following observations will be helpful to our proof:

Observation 1.2.1. The matrices M and R possess the
following properties for any G € G:

1* M =07, (16)
1TR =1, (17)

AR € sp {1}, (18)
MTAM1 = —M7Th. (19)

Observation 1.2.2. The fotal latency L (f™(z)) is given by
the following convex quadratic form in z, which we simply
write as a function of z:

LM(z2) = 2"MTAMz + 2" M"b + L, (20)

where Lr = RT AR+bT R is the total latency associated with
the flow that results from k — oco. Furthermore, Ly is also
equal to the zero-toll Nash flow total latency:

L™(G,5,0) = Lg. 1)



Proof of Observation 1.2.1. These facts follow algebraically
from the fact that by definition, for any z € R™~!, fnf(z)
satisfies (13). O

Proof of Observation 1.2.2. We simply substitute f*f(2) (that
is, equation (14)) into (30) to obtain

L(f™(2)) = RTAR+b"R+ 2"MTAM 2+ b"M 2+ 2RTAM =.

Consider the last term, 2RTAMz. By (18) in Observa-
tion 1.2.1, Jo € R such that RTA = 17, and by (16),
1T M = 07, so 2RT AM z = 0. Simplifying, we obtain

LM(2) = 2TMTAM 2 + 2" MTb + Lp,

where we let £ (2) = L(f™(z)) for brevity. Since A is
positive semidefinite, C“f(z) is convex in z. Finally, note that
that for x = 0, z = 1. Thus, f“f(l) represents the zero-toll
Nash flow on G for any user sensitivity distribution. By (19)
in Observation 1.2.1, we know that MTAM1 = —M7Tb, so
the zero-toll total latency is given by £ (1) = L. O

By focusing on minimally-indifferent Nash flows, we may
use (14) to parameterize the set of all Nash flows for any
network.

1) Characterizing the set of Nash flows: To formalize our
definition of f"f(2) (given in (14)), for any Sy, < Sy and
K > 0, we define the convex, bounded polytope Z C R 1 as
the set of solutions {z € R"~'} to the following inequalities:

1 1
- > > 00> 0 > s > 00> > —
1+I€SL_21_ == g = _2"1_1+/@SU

(22)

By construction, this polytope Z is the domain of f™(2). In
fact, Z is diffeomorphic to F (G, 8, x): It is clear from (13)
that any Nash flow can be written as f™(z) = R + Mz for
some choice of z. Furthermore, for a given x > 0, any z € Z
uniquely defines a set of sensitivities {s;}7~,' according to
the expression z; = ﬁ, and the resulting sensitivities are
ordered so they uniquely define a minimally-indifferent Nash
flow on G. Thus, f™(2) is a continuous bijection between Z
and F (G, 8, k).

To complete the proof of Lemma 1.2, we argue by the con-
vexity of Z and the properties of £f(z) that when x < ﬁ
(i.e., tolls are low) the worst Nash flow is one in which all
agents share the same low sensitivity.

Since Z is a bounded convex polytope, by convexity £ (%)
must take its maximum at a vertex of Z; it is straightforward
to show that a vertex of Z corresponds to a Nash flow in
which every agent lies at one of the extreme ends of the
sensitivity range. This means that for any routing game, there
are exactly two homogeneous vertices: one each for S, and
Su, and (n — 2) heterogeneous vertices at which some agents
have sensitivity St, and the rest have Sy.

2) Homogeneous vertices represent worst-case Nash flows:
Let =z, represent such a heterogeneous vertex; path-
ordering dictates that it must be of this form: z, =
[2Ly - 2L, 20y« - - s zU]T. Thus, if we write the ¢-th column
of M as p;, and let yp, = Zf;ll pi and py = S0 1y (where
¢ is the lowest-index link being used by agents with sensitivity
Su), Mz, = zppur, + zypyu. By substituting the expression for

a Nash flow (14) into the incentive constraints (12), it can be
shown via Observation 1.2.1 that the first (£ — 1) elements of
uy are nonnegative, but elements ¢ through (n — 1) of uy
are nonpositive. This corresponds to the fact that increases in
 always shift traffic to higher-index links. Furthermore, this
operation implies that the vector (Apy +b) is nonnegative and
ordered nondecreasing. Equation (16) implies that u%l =0,
so it follows that

p (Apy +b) <0 (23)

because (Apy + b) places more weight on the negative ele-
ments of py.

Now, we wish to compute the difference £ (2, - 1) —
L (2,); a positive difference indicates that the homogeneous
population is worse than the heterogeneous. It can be shown
that this difference is given by the expression

(21, — 2u) p [(21 + 2u — 1) Apy + (1 — 2z21) (Apy +D)] .
(24

When x < ﬁ, it is true that z;, > zy, that z1, + zy —
1 > 0, and that 1 — 221, < 0. A is positive semidefinite, so
MITJAMU > 0, and (23) shows that the expression in (24) must
always be non-negative: £ (21, - 1) — £ (z,) > 0.

Since (zr, - 1) corresponds to the homogeneous sensitivity
distribution in which every agent has a sensitivity of S, this
shows that the total latency of a heterogeneous Nash flow can
never be worse than that of a low-sensitivity homogeneous
Nash flow if x < \/SiTU:

max L(G, s, k) = L™(G, S, k).

SES

Thus, for k < ﬁ, the worst-case Nash total latency for
any population is realized by a population containing only one
type, completing the proof. O

Finally, Lemma 1.3 gives the unique optimal value of
x for homogeneous populations; heterogeneous populations
ultimately inherit this optimal result.

*

Lemma 1.3. For all G € G, and for all k # ﬁ = K*,

max L™ (G, s, k) < max L™ (G, s, ) .

25
sES8, SEST ( )

Finally, the price of anarchy of T°™°(k*) for homogeneous
populations is given by (9).

Proof of Theorem 1. We combine the inequalities on the price
of anarchy proved in each lemma. Lemma 1.1 implies that

PoA(G,8,k") = PoA(G,8n-1,K7). (26)
Lemma 1.2 implies that
PoA(G,8,_1,Kk*) = PoA(G, 81, k") (27)

and the worst-case total latency with x = k™ is better than the
un-tolled total latency. By Lemma 1.3, we have that for any

K # K*,

PoA(G,81,k™) < PoA(G, 81, k). (28)
Since 8; C S, it is clear that for any x,
PoA(G, 81,k) < PoA(G, S8, k). (29)



Combining inequalities (26), (27), (28), and (29), we have that
for any k # k¥,

PoA(G, 8, k™) < PoA(G, 8, k).

Thus, (9) is valid for heterogeneous populations as well. [

IV. CONCLUSIONS

In this paper, we proved tight bounds on the efficiency losses
in affine-cost parallel-network congestion games due to the
scaled marginal-cost taxation mechanism. It is worth noting
that the optimal scaled marginal-cost taxation mechanism, i.e.,
TSMC(k*), is not necessarily the optimal taxation mechanism
over the entire space of network-agnostic taxation mecha-
nisms; nonetheless, for any network and user sensitivities, the
taxation mechanism 75™¢(x*) always provides improvements
in the efficiency of the resulting Nash flows when compared
to the untolled case. The question of which network-agnostic
taxation mechanism optimizes the price of anarchy for general
networks and cost functions is currently unresolved.

Clearly, there are many open questions in the area of
robustness to unknown price-sensitivity, including how the
results will extend the results to non-singleton networks with
asymmetric action sets and more general cost functions. While
it is often the case that nonlinear latency functions can exac-
erbate inefficiencies; it is as yet unknown what role this will
play in questions of robustness. As we study broader classes
of systems, we plan to characterize the tradeoffs between the
quality of the system-designer’s information and the resulting
achievable efficiency guarantees.
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APPENDIX
PROOFS OF LEMMAS 1.1 AND 1.3

A. Notation and Terminology

We assume that a network has n > 2 edges. Throughout
the proof, we represent latency function parameters in matrix
form: A € R™*™ is defined as the diagonal matrix with
diagonal elements (a1, ag, ..., ay), and column vector b € R
contains all the constant coefficients from the edge latency
functions. Without loss of generality, we assume that A has at
least (n — 1) non-zero entries and that the edges are indexed
such that b is arranged in ascending order, i.e., b; < b; for
all ¢ < j. Using this notation, we write a flow f € R™ as a
column vector, so the vector of edge latencies ¢(f) € R™ is
L(f) = Af + b, and the total latency L(f) is given by

L(f)=fTAf+ fT0.

We write 0 and 1 to denote all-zeros and all-ones column
vectors, respectively, and I to denote the identity matrix.

We express the edge set as E = {ej, ea,...,e,}, and write
the latency function of edge e; as 4;(f;) = a;f; + b;.

(30)

B. Proof of Lemma 1.1 and Associated Claims

We first prove two intermediate claims. In Claim 1.1.1 we
show that if every link has positive flow in an un-tolled Nash
flow, then under 7°™¢(k), every link in that network will have
positive flow in a Nash flow induced by any finite £ > 0.

Claims 1.1.1 and 1.1.2 use the following definition: for Nash
flow f*f € F(G,8, k), for each edge e; € F, define s; and
s; by the following:

s; = inf {s, :agent z uses edge ¢; in flow ™}, (31)
z€[0,1]
si = sup {s, :agent z uses edge ¢; in flow f™}. (32)

z€[0,1]

For a particular Nash flow, s; and s; represent the lowest
and highest sensitivities of any agent on edge e;, respectively.

Claim 1.1.1. For any network G € G, let f* € F(G,8, k)
for any k > 0. Then f™ has positive flow on every edge.

Proof. To avoid trivialities, we assume that a positive mass of
users have non-zero sensitivity. In an un-tolled Nash flow f,
Ve;,e; € E, it must be that a; f; + b; = a; f; + b;. Suppose



there is a tolled Nash flow f* € F(G,8,x) for & > 0 in
which some edge ej has fi = 0. Thus, for every edge e;,

(1+sfr)aiff +bi <by <aifi+b. (33)

Simplifying (33) and summing over edges, we obtain
S fE < Y (fi)/(1 + sfk). Since at least one s} is
strictly positive, this implies that > ., ff < " | fi, but
this would mean that the tolled flow has less total traffic than
the original un-tolled flow, a contradiction. O

Next, in Claim 1.1.2 we show that under scaled marginal-
cost tolls, heterogeneous users sort themselves onto the links
in a predictable order.

Claim 1.1.2. Scaled marginal-cost tolls induce an ordering on
the edges of a network: for any sensitivity distribution s € 8§
and toll scale factor k > 0, given any two edges e; € E and
e; € E for which b; < by, the following conditions hold in a
Nash flow fo: (i) a; frt > ajf“f, and (ii) s;L <s;.

Proof. Consider edges e; and e;41 in network G. By hypoth-
esis, b; < b;y1. Consider a Nash flow f* € F (G, s, k) with
k> 0and s € 8. By Claim 1.1.1, f2f, > 0. Take any user
x € [0, 1] on edge e;41. Since this is a Nash flow, user z must
(weakly) prefer edge e; 11 to edge e;. Since each edge tolling
function is 7.(f.) = aefe,

(14 kse) (@i [ — aigr f71) > bigr — b > 0.

Thus, a; f™ > a1 2L, > 0, for all i, establishing the first

conclusion. A user with sensitivity s;, ; would also (weakly)
prefer edge e; 1, to edge e;:

(]. —+ /isi_+1)ai+1f{‘i1 —+ bi+1 S (]. —+ Iﬁ?Si__i_l)aifinf —+ b1 (34)
Since a;41f2f; < a; f™M, then for any s > s, |,
(1 + ns)ai+1ff+1 -+ bi+1 S (1 + HS)aifinf -+ bz

Here, we find that any agent with higher sensitivity s >
sy, (weakly) prefers edge e;11 to edge e;, which implies
that s > s+' in other words, no agent using edge eL+1 has a
lower sensitivity than any agent using edge e;, or s < Sii1s
establishing the second conclusion.* O

To complete the proof, we exploit this ordering to construct
a minimally-indifferent Nash flow from a Nash flow for any
arbitrary sensitivity distribution, thus showing that worst-case
behavior for arbitrary populations can always be realized by
populations with a finite number of user sensitivities.

Consider edge e; in Nash flow f* ¢ F(G,s,k); by
Claim 1.1.2, sj' < s;,1- We may rearrange (34) (and the
opposite inequality for s;r) to obtain

biy1 —b;
1+ ks 4

b7+1 b;
= 1—|—/€8 '

<a;fM -

a’l+1f1

Now, for each i < (n — 1), let s; be the solution to

ai f™ = ag o _ biy1 —b;
e 1 b
iJq i+1Ji4+1 = 1+ ks;

4Note that if b; = bi41, all agents are indifferent between edges e; and
e;+1 in any Nash flow, so from the standpoint of edge-ordering, these two
edges would behave as a single edge.

Note that every s; € [s?,s;l] and that s; < s;11. Now,
construct a population of agents’ in which Vi € {2,...,n—2},
(fP + fnf,)/2 agents have a sen51t1v1ty of s;; (1 + f37/2)
agents have sensitivity s;, and ( /24 f,’}f) agents have
sensitivity s, ;. Then f™ ¢ F™(G,8,_1,k); ie., it is
a minimally-indifferent Nash flow for the newly-constructed
population containing (n — 1) sensitivity types. That is, for
each s;, the following is true:

(1 + ksi)aifi +b; = (1 + Ksi)air1 fir1 + big1. (35)

Since for any f* € F(G,8,x) we have shown that
e Fmi(G, 8, 1,k), it must be true that F (G, 8, k) C
F™i (G, 8,_1,k). The opposite inclusion is obvious, since
S8n_1 C 8, and the desired result is immediate. O

C. Proof of Lemma 1.3

The proof of Lemma 1.3 is straightforward; we show that for
homogeneous populations with sensitivity s and scale factor
Kk > 0, the expression for the total latency is a 2nd-order
rational function in (sx). This function possesses monotonicity
properties that lead directly to the desired result.

For homogeneous s € 81, every element of z is equal since
every agent has the same sensitivity; i.e., for s € [Sp, Su] and
k2>0,2=17- +9 -1. By substituting this into (20), if we write
©=—-1T"M = 1TMTAM1 > 0 (see Observation 1.2.1),
we may explicitly write the total latency of a homogeneous
Nash flow as

1TMTAM1 BT M1
LG, s,k) = Lr + >
(1+ sk) 1+ sk
SK
—Lp— — (36)
B 1+ sw)?

It is easy to verify that the minimum of (36) occurs whenever
k = 1/s, and is equal to Lr — ©/4. Furthermore, partial
derivatives of (36) show that the worst-case total latency is
minimized for some unique x* such that £ (G, Sy, k*) =
£ (G, Sy, k*) . Tt can easily be verified from (36) that the
solution to this equation is

1
kY= . (37)
VSLSU
The partial derivatives of (36) with respect to « also show that
for any xk # k¥,

max LG, s, k%) < max LM (G, s,k).

Now we compute the price of anarchy resulting from tolls
as defined in (37). Since we know that an un-tolled latency can
never be more than 4/3 times an optimal latency, from (36)
we can write

cﬁ«L&m Lr <4
£(G) Lp—10 3
This implies that © < Lp, and it follows algebraically that

for k* as defined in (37), s € [SL, Su], and G, the expression
for the price of anarchy is given by (9). O

(38)

SThis construction is not unique; there are infinitely-many ways to assign
mass to the various sensitivity types.



