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Many of today’s engineered systems are tightly interconnected with their users, and in many
cases, system performance depends greatly on user behavior [1]. As a result, the traditional lines
between engineering and the social sciences are becoming increasingly blurred, and analytical
tools such as game theory are finding new applications in engineering [2], [3]. It is often
insufficient to judge an engineered system on its technical merits alone, since strategic user
behavior can lead to unpredictable and undesirable results [4]. Of particular importance to this
article are socially-integrated engineering problems in which users’ strategic behavior has a
significant impact on overall system performance. These types of systems appear in a variety
of contexts in theory and practice: transportation networks [5], ridesharing applications [6], [7],
supply-chain management [8], cloud computing [9], and electric power grids [10] are immediate
examples. A common problem in these settings is that individual users’ incentives may not be
aligned with the objectives of the central planner. Thus, in addition to the merely-technical
challenges they pose, an engineer may need to consider methods of influencing individual
user behavior to effect positive change on aggregate system performance [11]. These behavior-
influencing mechanisms often take the form of offering users a tradeoff between quality-of-
service and monetary incentive.

Fundamentally, any behavior-influencing mechanism requires information about the under-
lying system and the user population who are to be influenced, as depicted in Figure 1. For
example, if a system planner desires to price a network resource to encourage efficient network
usage, it may be desirable to characterize the sensitivity of the user population to pricing. If
this information is difficult to gather or altogether unavailable, the planner may need to rely
on crude estimates of user price-sensitivities, and the pricing design must take this uncertainty
into account. At worst, a misunderstanding of informational dependencies can lead to “perverse
incentives,” or incentives that exacerbate the very problems they were intended to solve.

Here, a theory of “robust social influence” is an attractive goal: how can behavior-
influencing mechanisms be designed so that they are robust to a variety of mischaracterizations
or variations in models of social behavior? Some natural questions in this context include
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Figure 1. Relationship between social system and behavior-influencing mechanism. In order
to exert influence (whether via financial incentives, access control, system design, or provid-
ing specific information to users), a behavior-influencing mechanism typically requires some
information about the social system to be influenced. Recent research has investigated the
relationship between the quality of this information and the resulting effectiveness of the influence
mechanism. This article highlights recent efforts to characterize this informational dependence.

1) How robust are existing behavior-influencing methodologies to system mischaracteriza-
tions?

2) How “close” do behavior models need to approximate true behavior for an influencing
mechanism to provide good performance?

3) How can perverse incentives be systematically avoided?

This article investigates the concept of robust social influence with regard to a well-studied
model of static network traffic routing in which drivers need to be routed across a congestion-
sensitive network. In this model, the focus is typically on analyzing the quality of static routing
equilibria; thus, the results discussed in this article are complementary to recent research on
dynamic models of distributed routing [12]–[14]. It is known that if individual drivers make their
own routing decisions to minimize their own experienced delays, overall network congestion can
be considerably higher than if a central planner had the ability to explicitly direct traffic [15].
Accordingly, there has been a great deal of research on the application of road tolls for the purpose
of influencing drivers to make routing choices that result in globally-optimal routing [16]–[21].
In much of this literature, a toll-designer is assumed to have a detailed characterization of
the system: network topology, link congestion characteristics, and user demand structure are
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commonly assumed to be perfectly known quantities.

If road tolls are designed to incentivize good performance for one instance of a routing
problem, and then some detail of the routing problem changes (for example, a link is “removed”
by a traffic accident or natural disaster), it would be desirable for the original tolls to
incentivize good performance on the changed routing problem as well. That is, we would like
to know if the performance guarantees provided by the original tolls are robust to changes
or mischaracterizations in the underlying details of the system (e.g., network structure, traffic
rate, user demands). Here, we distinguish between different degrees of robustness: a taxation
mechanism is strongly robust to mischaracterizations of some system parameter if it incentivizes
optimal behavior for variations of that parameter, whereas a mechanism is weakly robust if it
merely incentivizes behavior that is no worse than the un-influenced behavior.

Existing research has demonstrated that if a tax-designer has an accurate and detailed
characterization of the routing problem, it is possible to design simple road tolls which incentivize
optimal routing [22], [23]. These are termed fixed tolls, since they are simple constant functions
of traffic flow. However, the robustness of fixed tolls has not been investigated. Another well-
studied taxation mechanism is that of marginal-cost tolls, in which each network link is assigned
a flow-varying tax that is specifically designed to penalize inefficient congestion. Marginal-cost
tolls are known to incentivize optimal network routing in the special case that all network users
are homogeneous in tax-sensitivity (i.e., they all value time equally) [24], [25]. These tolls
are notable since they are known to be strongly robust to variations of network structure for
homogeneous users. In [26], it is shown for a small class of routing problems that marginal-cost
tolls are weakly robust to variations of user tax-sensitivities, but the robustness of marginal-cost
tolls for general routing problems remains an open question.

The contribution of this article is to show that fixed tolls and marginal-cost tolls are not
robust to a variety of mischaracterizations of routing problems and user populations. Specifically,
this article’s theoretical contributions are

• Proposition 4: Fixed tolls fail to be strongly robust to variations in network latency functions.
• Theorem 5: Fixed tolls cannot even be weakly robust unless they depend on some global

information about network structure.
• Proposition 6: Marginal-cost tolls can create perverse incentives in general routing problems

if the tax-sensitivities of users are unknown.

In all of these results, the lack of robustness is shown using very simple problem instances. For
example, Theorem 5 is proved using networks with only two or three links. Since these taxation
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mechanisms fail on very simple networks, it seems reasonable to assume that larger networks
could make things even worse; though more work is required to verify this analytically.

This article investigates the specific case of equilibria in static network routing problems,
but note that at its core, taxation in routing problems is simply a matter of offering users a
financial incentive to accept reduced quality-of-service. These tradeoffs between money and
quality-of-service are not specific to routing problems, but appear in many contexts, including
the aforementioned settings of ridesharing systems, supply chains, cloud computing, and smart
grids. It may be that the approaches used in this article will bear fruit in these other diverse
settings as well.

Traffic Routing Model and Toll Robustness

A classical example of an engineered system whose performance depends heavily on the
choices of its users is that of a transportation network; this is captured in the literature by a
problem known as a “non-atomic routing game.” The basic problem setup is this: there is a
group of travelers who need to be routed through a congestion-sensitive network in a way that
minimizes the users’ average travel time. It is typically straightforward to compute an optimal
routing profile (also called a network flow), but implementing a particular flow would require that
a central planner had the ability to force every driver to take a specified route. Unfortunately,
it is well-known that if each driver chooses his route in order to individually minimize his
own travel time, the resulting aggregate behavior can be substantially less efficient than the
centrally-computed optimal flow [27].

Since the system planner cannot direct traffic explicitly, he must use some indirect means
of influencing users to behave optimally. Various methods which have been studied include
financial incentives [28], providing drivers with specific information [29], access control [30],
and socially-conscious network design [31]. All of these operate by indirectly modifying the
drivers’ preferences over their available routes. Following a formal model introduction, this
section provides examples of the inefficiency resulting from self-interested behavior, and shows
that simple attempts to influence user behavior can have surprisingly negative results.

Model and Performance Metrics

Consider a network routing problem in which a mass of r units of traffic needs to be
routed across a directed, acyclic network (V,E), which consists of a vertex set V and edge set
E ⊆ (V × V ). We write P ⊂ 2E to denote the common set of paths available to traffic, where
each path p ∈ P consists of a set of edges connecting the source to the destination. We write fp
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to denote the mass of traffic using path p. A feasible flow f ∈ R|P| is an assignment of traffic
to various paths such that

∑
p∈P fp = r and for every path p, fp ≥ 0. Note that in this model,

demand is inelastic: all travelers must arrive at their destination. For more information about a
model variation which allows drivers to choose not to travel, see “Elastic Traffic.”

Given a flow f , the flow on edge e is given by fe =
∑

p:e∈p fp. Note that f always denotes
a vector of path flows; when referring to an individual edge flow, the symbol fe is always used
with an unambiguous e subscript. To characterize transit delay as a function of traffic flow, each
edge e ∈ E is associated with a specific latency function `e : [0, r] → [0,∞). We adopt the
standard assumptions that latency functions are nondecreasing, continuously differentiable, and
convex: these assumptions model the natural phenomenon that adding traffic to a link provides
gracefully-decreasing marginal benefits. Note that latency functions are anonymous: all users
affect network delay equally. The system-planner’s hope is to minimize the total latency, which
is a measure of aggregate network delay, expressed by the formula

L(f) ,
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(f), (1)

where `p(f) =
∑

e∈p `e(fe) denotes the latency on path p. We denote the flow that minimizes
the total latency by

f ∗ ∈ argmin
f is feasible

L(f). (2)

Due to the convexity of each `e, L(f ∗) is unique. Finally, a routing game is given by the tuple
G = {V,E,P , {`e}e∈E, r}. We write the set of all such routing problems as G.

An inherent challenge in this setting is that users’ self-interested routing choices may lead
to very different aggregate flows than those which minimize the total latency. One popular way to
model the effects of users’ self-interested choices is that of the Nash Flow (also called Wardrop
Equilibrium). A Nash flow fnf is a routing profile in which no individual user can change routes
and decrease his or her latency; put differently, in a Nash flow every user’s route choice is
individually-optimal with respect to the choices of other users. Formally, in a Nash flow fnf , for
any two paths p and p′, if fnf

p > 0, then `p(fnf) ≤ `p′(f
nf). That is, if any user is choosing path

p, then the latency experienced on path p can be no greater than the latency of any other path
p′. This fact implies that in a Nash flow, every path with positive traffic has equal latency:

If fnf is a Nash flow and fnf
p , f

nf
p′ > 0 for some paths p, p′ then `p

(
fnf
)

= `p′
(
fnf
)
. (3)

In this setting, Nash flows always exist and are essentially unique: that is, for a given network,
any two Nash flows f and f ′ satisfy L(f) = L(f ′). [1].
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Figure 2. Pigou’s Network, illustrating the negative effects of selfish behavior. In this network,
drivers can choose between the upper, congestion-sensitive link and the lower, constant-latency
link. The image on the left depicts a congestion-minimizing routing profile in which the traffic
is split evenly between the two links. However, in this optimal flow, agents on the lower link
experience a latency of 1, and (individually) could decrease their travel time by switching to
the upper link. Unfortunately, this self-interested behavior can have negative consequences for
system performance. The image on the right depicts a routing profile arising when every driver
chooses the path with lowest delay; here, drivers have crowded on to the upper link, degrading
its performance. A central problem is that no driver has an incentive to choose the lower, more
efficient path.

Pigou’s Example: the Inefficiency of Self-Interested Behavior

The first example, depicted in Figure 2, illustrates the basic problem that travelers’
individual self-interested choices can lead to over-congested network flows. This illustration
was first published in 1920 by the economist Arthur Pigou, and remains a centerpiece of work
in this area [15]. The setting is as follows: there is a simple two-link network in which 1 unit
of travelers can choose between a linear-latency congestion-sensitive link and a constant-latency
link. The first link offers a faster journey, provided that it is not chosen by too many users.

The optimal flow on this network as shown on the left in Figure 2 is to split the traffic
evenly between the two links, so that a mass of 1/2 experiences a latency of 1/2 on the top link,
and the remaining traffic experiences a latency of 1 on the lower link, giving a total latency of
L(f) = (1/2)2+1/2 = 0.75. However, this requires half the drivers to choose quite a long route;
any individual driver has a compelling incentive to switch to the upper link and arrive at her
destination in half the time. Unfortunately, if all drivers choose the route with the lowest latency,
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Figure 3. Braess’s network, depicting an unintended consequence of attempting to influence
social behavior. The image on the left in (a) depicts a transportation network and its associated
Nash flow. A well-meaning traffic engineer, hoping to improve network congestion, adds a new
link to the network connecting the two intermediate nodes. Despite the fact that this link’s cost
is zero, its addition to the network leads to the setting on the right in (b). Any user at node B
can take the new link without increasing his cost, but in doing so, he increases the cost of the
lower path, which in turn leads to more users at node A choosing the upper path. The ultimate
effect of augmenting the network with a zero-cost link is that every driver’s travel time increases
by 33%.

they will all crowd on to the upper link and establish a Nash flow as depicted on the right in
Figure 2. The reader can verify that (1, 0) is indeed a Nash flow, since in this configuration,
both edges have an equal latency of 1, so no user can change routes and decrease their latency.
In this Nash flow, the network’s total congestion is 1, a factor of 4/3 greater than the optimal
total congestion.

Braess’s Paradox: the Unintended Consequences of Naı̈ve Influence

A second canonical example known as Braess’s Paradox (first noted by Dietrich Braess [4])
illustrates that seemingly-innocuous attempts to influence user behavior can lead to unexpected
and perverse consequences. Consider the network depicted in Figure 3(a); traffic can choose
between two paths, each routing through its own intermediate node. As-is, the total congestion
on the network is 1.5, since half the traffic uses the upper path and half uses the lower path.
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Suppose now that the system planner adds a single zero-cost link to the network connecting
the two intermediate nodes to one another, as depicted in Figure 3(b). Now, under the old
flow in which users split evenly, any user at node (B) would prefer to take the new zero-
cost link rather than continue on the upper path. This increases the lower path’s congestion,
causing more users at (A) to choose the upper path, but those users in turn will choose the new
zero-cost link once they arrive at node (B). Ultimately, equilibrium is reached at the routing
profile depicted in Figure 3(b), with a corresponding total congestion of 2. Here, this behavior-
influencing mechanism (augmenting the network with a zero-cost link) backfired and caused a
dramatic increase in total congestion.

Price of Anarchy: Worst-Case Equilibria

A common approach to quantifying the performance loss resulting from self-interested
behavior is to divide the total latency of a Nash flow with that of an optimal flow. In each case
above, this ratio was 4/3 – the Nash flow in each instance was 33% worse than the corresponding
optimal flow. This ratio between equilibrium and optimal costs has been extensively explored in
the literature and is known as the price of anarchy [32]. It is typically evaluated in worst-case
over classes of games; formally, for a game G in a class of games G, writing Lnf(G) to denote
the Nash flow total latency for game G and L∗(G) to denote the respective optimal total latency,
the price of anarchy of G is defined as

PoA(G) = max
G∈G

Lnf(G)

L∗(G)
. (4)

For example, if G is defined as the class of routing games where all edges have linear-affine
latency functions, it is known that PoA(G) = 4/3 [33]. Thus, both Pigou’s example and Braess’s
paradox are worst-case examples of linear-latency routing games. However, for networks with
higher-degree polynomial latency functions, the price of anarchy can be arbitrarily high. This
can be seen in Pigou’s network by replacing the linear cost function on the first link with a
polynomial cost function of `1(f1) = (f1)

d; the price of anarchy is unbounded in d [34]. The
price of anarchy has been evaluated for many different classes of games, with applications as
diverse as network resource allocation [35], distributed control [36], and more. For more details,
see “Computing Price of Anarchy Bounds.”

Robust Social Coordination Using Tolls

It was shown above how self-interested behavior can lead to poor system performance;
in both examples, the fundamental problem was that in an optimal flow, users could decrease
their own cost only by imposing a greater cost on those around them. If users were altruistic,
willing to accept a personal degradation of service for the sake of the greater good, they might
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be expected to adopt this type of socially-optimal configuration. One way to influence users
to choose this configuration is to charge tolls on over-congested links, hoping to increase their
costs enough that a sufficient number of users will avoid them. The tolls are put in place
essentially to induce an “artificial altruism” in the population; in fact, there are many parallels
between the literature on altruism in congestion games and the literature on financial incentives
in congestion games [37]. Of course, the toll-designer must take care in choosing the tolls. It has
already been seen in Braess’s Paradox that seemingly-innocuous approaches can have unexpected
consequences, and the toll-designer must be certain not to fall into a similar trap. If tolls are too
high on a particular edge, it may be that too many users will avoid that edge; if tolls are not
properly balanced throughout the network, uneven and inefficient flow distributions could arise.

Tolling Model

Formally, we write τe(fe) to denote the (possibly flow-varying) toll on edge e; assigning
tolls to network edges modifies the costs experienced by users on those edges, inducing a new
game with new associated equilibria. The system-planner’s goal is to levy tolls which induce
the network’s optimal flow as an equilibrium of the tolled game. To model network users’
response to tolls, the user population is represented by the interval [0, r] and a sensitivity function
s : [0, r] → R+ that assigns a sensitivity value sx to each user x ∈ [0, r]. This sensitivity can
be interpreted as the reciprocal of the user’s value-of-time: given a flow f , the cost experienced
by user x ∈ [0, r] using path p̃ ∈ P is simply the sum of the latencies and sensitivity-weighted
tolls on that path, given by

Jx(f) =
∑
e∈p̃

[`e(fe) + sxτe(fe)] . (5)

Intuitively, a user with a large sx value is willing to use a high-latency route to avoid tolls,
while a user with a low sx value is willing to pay a high toll to use a low-latency route. The
heterogeneous game specification now includes the population’s sensitivity function as well as
other parameters: G = {V,E,P , {`e}e∈E, r, s}.

Given a set of edge tolls, a Nash flow fnf is defined in a similar way as before, with the
exception that now the Nash condition must be checked for each user. That is, fnf is a flow
in which each user is individually choosing the lowest-cost route available, given the choices
of other users. As before, Nash flows in the tolled setting always exist and are known to be
essentially unique [38]. Formally, for each user x ∈ [0, r],

Jx
(
fnf
)

= min
p∈P

{∑
e∈p

[
`e
(
fnf
e

)
+ sxτe

(
fnf
e

)]}
. (6)
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Finally, the system-level costs are measured in the same way as before with the total latency:

L(f) =
∑
e∈E

fe`e(fe) =
∑
p∈P

fp`p(f).

Note that tolls are not included in the system cost – the system planner is still only attempting
to minimize aggregate delay.

The robustness of taxation mechanisms

It is the goal of robust social influence design to levy tolls that incentivize desirable behavior
irrespective of changes or mischaracterizations of the underlying system. Figure 4 depicts several
types of system changes which could potentially create problems for taxation methodologies.
In these diagrams, the tolls were designed for the nominal system on the left, but after the
respective change, these same tolls are effectively being applied to different networks than that
for which they were designed. The hope is that the tolls designed for the original system provide
comparable performance guarantees on the “new” systems; to this end, we will ask if each of
several common taxation methodologies is robust to variation in parameters such as:

1) Network Changes: If tolls are designed to incentivize efficient flows for a particular
network, and the network undergoes some change, do the original tolls still incentivize
efficient flows for the new, changed network?

2) Traffic Rate: Do tolls designed for one traffic rate (i.e., one value of r) still incentivize
efficient flows if the rate changes?

3) Demand Structure: If some users have access to different paths than others, how does this
impact the design of the correct tolls?

To investigate the robustness of a particular tolling strategy to variations of a parameter,
a system-planner can design tolls for a specific system realization, hold the tolls constant, and
study the effect on Nash total latency of varying the parameter in question. One way to model
perturbations of games is to define a correspondence ΓG(·) that returns games similar to some
nominal game G that have been perturbed in the argument of ΓG. For example, ΓG({`, r})
represents the set of routing games that differ from G only in their latency functions ` and total
traffic rate r.

To formally discuss tolling strategies, let a taxation mechanism τ be a mapping from games
to edge taxation functions; thus, we write τ (G) to denote the edge taxes that τ assigns to game G.
We write Lnf(G∗, τ (G)) to mean the Nash flow total latency for some (possibly different) game
G∗ induced by tolls generated by τ for the nominal game G. A taxation mechanism τ is said
to be strongly robust on G if τ incentivizes optimal flows for all allowable perturbations of G.
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Figure 4. Diagram depicting possible network changes a designer may consider in robustness
analysis. Suppose tolls τ1, τ2, andτ3 are designed for the network on the left. To analyze the
robustness of this toll design, the designer may subject the routing problem to various hypothetical
changes: topology (deleting link 3), traffic rate (increasing r above its original value), and demand
structure (restricting half the traffic to the upper two links, the other half of the traffic to the
lower two links), while keeping the tolls designed for the original network. If the tolls are able
to incentivize efficient behavior on the “new” networks despite having been designed for the
original network, they are called robust.

That is, the strong robustness of τ to variations in game parameters X ⊆ {V,E,P , {`e}e∈E, r, s}
implies that

Lnf(G∗, τ (G)) = L∗(G∗) for all G∗ ∈ ΓG(X). (7)

We likewise say that τ is strongly robust on a larger class of games G if (7) holds for all G ∈ G.

This may be too strong a condition in some settings (though strongly-robust taxation
mechanisms do exist; see Theorem 2), so a taxation mechanism is said to be weakly robust on
G if it never incentivizes Nash flows on perturbed networks that are worse than the un-tolled
flows. That is, writing Lnf(G, ∅) to denote the Nash flow total latency on G without tolls, the
weak robustness of τ on G to parameters specified by X implies that

Lnf(G∗, τ (G)) ≤ Lnf(G∗, ∅) for all G∗ ∈ ΓG(X). (8)

Again, we say that τ is weakly robust on a larger class of games G if (8) holds for all G ∈ G.
Put differently, if tolls are weakly robust, they will not create perverse incentives. Thus, by the
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definitions presented in this section, assigning a toll of 0 to every link is always a weakly robust
taxation mechanism, as it certainly cannot make Nash flows worse.

Survey of Existing Taxation Methodologies

Fixed tolls for designers with detailed information

A simple way to apply tolls for social coordination would simply be to charge all users of
each link a fixed price. Tolls of this form are known as “fixed” tolls, since the tolling function on
each edge is a constant function of edge flow. To see fixed tolls in action, consider again Pigou’s
Example in Figure 2. Since the upper link is over-congested, it seems natural that charging the
proper toll on that link would influence some users to deviate to the lower link. If all users
have a tax-sensitivity equal to 1, one set of edge tolls that enforces the optimal flow for Pigou’s
example is simply τ1(f1) = 0.5, and τ2(f2) = 0. Under these tolls, the optimal flow of (1/2, 1/2)

is a Nash flow, since in it all users experience a cost of 1. If users are heterogeneous, an optimal
fixed toll can still easily be found by charging the price that would cause the most sensitive half
of the users to deviate to the lower link.

Similarly, in Braess’s Paradox (see Figure 3), one way to enforce optimal flows for unit-
sensitivity homogeneous users is to charge a toll of 1 on the center zero-cost link. This effectively
removes the pathological link from the network, returning the network to its original optimal
topology as in Figure 3(a).

This fixed-tolling approach has been studied in general, and it is known that fixed tolls
can be computed to enforce any feasible flow, provided that the system planner has a complete
characterization of the system: network topology, user demand profile, latency functions, and
user sensitivities [22], [23].

Theorem 1 (Fleischer et al., 2004 [22]; Karakostas et al., 2004 [23]): For any routing
game, fixed tolls can be computed which incentivize any feasible flow.

In Figure 5(a), this fixed-toll approach is depicted as a block diagram; note in particular that
tolls are computed by a single, centralized optimization problem that takes as inputs all system
variables and outputs a list of edge tolls.

Marginal-cost tolls: strongly robust to network variations

To motivate the concept of marginal-cost tolls, note that in traffic routing, an agent’s total
cost can be viewed as being two-fold: the first component is the agent’s own experienced delay,
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Figure 5. Depiction of informational dependencies of various taxation mechanisms. Subfigure
(a) depicts the optimization strategy and informational dependencies of the fixed-toll mechanisms
of [22], [23], in which a network’s optimal fixed tolls are calculated as the output of a single
centralized optimization problem that takes a complete system specification as input. In contrast,
(b) is a corresponding diagram for the marginal-cost toll approach of [24], [25]. First, note that
network structure and user demands are not required for the computation of optimal marginal-
cost tolls. Second, note that the tolling function for any given edge e is computed locally –
τe(·) depends only on edge e’s latency function `e(·) and traffic flow fe. This implies that the
efficiency guarantees provided by marginal-cost tolls are robust to variations in network and
demand structure simply by merit of their functional form.

the second is the delay that the agent’s presence imposes on others. A marginal-cost toll explicitly
charges each agent for his imposition on other agents; in economic language, marginal-cost tolls
internalize the agent’s negative externalities [24], [25]. The marginal-cost taxation mechanism
τmc assigns tolls to each edge e given by

τmc
e (fe) = fe ·

d

dfe
`e(fe). (9)

Note that each edge’s toll depends only on that local edge’s congestion properties and traffic
flow; global information regarding traffic rate and network topology is not used.

It is well-known that for homogeneous user populations, charging marginal-cost tolls
enforces exactly-optimal network flows [24], [25]:

Theorem 2 (Beckmann, McGuire, Winsten, 1956 [24]): For unit-sensitivity homogeneous
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populations, the marginal-cost taxation mechanism τmc incentivizes optimal flows on all
networks:

Lnf(G, τmc(G)) = L∗(G). (10)

Since these tolls can be implemented with no global information, by construction they are
strongly robust to variations of network topology, user demand structure, and overall traffic rate.

This can be seen for Pigou’s and Braess’s networks in Figures 2 and 3, where marginal-cost
tolls prescribe tolling functions of τ(f) = f for each of the linear-cost edges. For homogeneous
users, the linear-cost edges have a resulting effective cost of 2f , which incentivizes the desired
optimal flows. See Figure 5(b) for a depiction of the informational dependencies and localized
optimization structure of marginal-cost tolls in comparison with that of the fixed-toll methods
of [22], [23].

Large universal tolls: instance-agnostic and weakly robust

Recent interest in robust social influence has prompted the development of more-
sophisticated taxation mechanisms which confer robustness guarantees by design. One of these
is investigated for heterogeneous users in [5], where the authors prove the following theorem:

Theorem 3 (Brown and Marden, 2015 [5]): Consider any routing problem G. If for some
SL > 0, the heterogeneous tax-sensitivities of every agent x ∈ [0, r] satisfy sx ≥ SL, and the
tolling function on each edge is given by

τue (fe) = κ

(
`e(fe) + fe ·

d

dfe
`e(fe)

)
, (11)

then it will be true that

lim
κ→∞
Lnf (G, τ u(G)) = L∗(G). (12)

Note that the tolling functions in (11) are network-agnostic in that they do not depend on
any instance-specific information other than latency functions; tolling functions can be designed
with no knowledge of network topology, demand profile or distribution of user sensitivities,
and computed locally at each edge using only local information. Thus, this shows that there
is no network so pathological that nothing can be done about it with instance-agnostic tolls.
In the language of robustness, (12) shows that these Universal Tolls are at least weakly robust
to heterogeneous sensitivities for large enough κ, and in the large-κ limit, they get arbitrarily
“close” to strong robustness.
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Alternative Mechanisms

A wide variety of other mechanisms have been studied for purposes of robust social
influence. One such mechanism is that of the Stackelberg routing mechanism [39]. In this setting,
the game progresses sequentially: first, the system planner directly controls some fraction of
traffic and assigns it to feasible paths; second, the remaining fraction of traffic routes selfishly.
This mechanism can be viewed as a best-case scenario when it comes to influencing social
behavior, and in some cases the price of anarchy guaranteed by Stackelberg routing can be
shown to be a lower bound for the price of anarchy of a taxation mechanism [30].

Other possibilities include augmenting the universal tolls of 3 with an ability to com-
municate limited information between the links. In many control applications, allowing limited
communication between controllers can greatly improve system performance [40]; it is possible
that allowing limited information sharing between different link taxation functions could help
compensate for poor system characterizations.

It is also possible to consider the budget-balanced case in which the system planner collects
no net revenue, rather simultaneously returning the tolls collected on some links as subsidies
on other links. This is studied in [41]; it is possible that a setting like this could yield some
intriguing robustness benefits. For more information, see “Budget-Balanced Tolls.”

The robustness of bounded tolls

Theorem 3 proves that near-optimality can be achieved with large tolls, but it gives no
indication as to how high tolls must be. There may be settings where this high-toll approach
would not be possible for technical or political reasons, either of which could impose an implicit
upper limit on allowable tolling functions. Accordingly, there has been research on the robustness
of tolls which respect an upper bound for parallel networks with affine cost functions [5]. Other
work on bounded tolls, not explicitly focusing on robustness, can be found in [42].

Price-discrimination and robustness

The effect of the universal tolls of Theorem 3 is to obscure the differences between users
by charging high tolls which wash out the effect of the nominal latency functions. However, a
conceptually simple way of accomplishing the same thing would be for the tolls to depend on the
identity and sensitivity of the payer. If each user with sensitivity sx were charged a marginal-cost
toll (9) divided by sx, every user would experience costs exactly equal to those induced for a
unit-sensitivity homogeneous population by marginal-cost tolls, which would incentivize optimal
flows. This type of toll applies a principle known by economists as perfect price-discrimination,
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sometimes also called 1st-degree price discrimination. Perfect price-discrimination sidesteps the
issue of individual price-sensitivities by charging each agent precisely the “correct” price for that
agent. Of course, putting such a scheme into practice would be a formidable task, since it would
require not only that the tax-designer be able to charge each agent an individualized price, but
furthermore know the correct price for each agent. In view of this challenge, the authors of [43]
consider the possibility of coarse price-discrimination, and suggest that such a scheme could
indeed yield significant efficiency gains.

Centralized Adaptive Tolls for Unknown Latency Functions

The foregoing discussion has assumed that the system-planner knows the edge latency
functions perfectly, regardless of other uncertainties. What if the opposite were true, and a
system-planner were given a network and demand profile, but did not have any information
regarding the latency functions? This situation is considered in [44]. The authors assume that
the population is homogeneous, with unit-sensitivity to tolls, that the demand profile is constant,
and that the system-planner has a desired target flow that he wishes to enforce. They develop an
iterative algorithm whereby a system planner levies tolls on the network, records the resulting
Nash flow, updates the tolls accordingly, and so on – and it is proved that Nash flows resulting
from this sequence of tolls converge to the planner’s target flow. Interesting robustness questions
in this context could be posed in a dynamic framework: does this algorithm converge quickly
enough to ensure efficient behavior if the underlying system is changing rapidly?

Contributions: The Non-Robustness of Fixed and Marginal-Cost Tolls

A Study on the Robustness of Fixed Tolls

As discussed above, fixed tolls can enforce any feasible flow if chosen properly. How
robust are they to variations in a system’s underlying parameters? Here, we investigate the
robustness of fixed tolls to variations of three parameters: latency functions, overall traffic rate,
and general network changes. All of this analysis of fixed tolls will be in the simplified context of
homogeneous unit-sensitivity populations; thus, any negative results here can only be worsened
by extending to the broader heterogeneous case.

A brief summary of these results is as follows: Proposition 4 shows that unsurprisingly,
fixed tolls cannot be strongly robust to variations of latency functions. That is, if a network’s
latency functions are unknown, it is not possible to guarantee perfectly-optimal flows. However,
Proposition 4 leaves open the possibility of weak robustness along this dimension.

Second, we exhibit a simple setting in which a particular fixed toll incentivizes arbitrarily-
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inefficient flows when the traffic rate has been mischaracterized. Unlike Proposition 4, this second
example does not immediately imply any general conclusions; it is possible that some nonzero
fixed tolls will be found which are at least weakly-robust to rate variations. Nonetheless, it
represents a cautionary tale, suggesting that much care must be taken with fixed tolls if the
traffic rate is unknown.

Finally, Theorem 5 shows that fixed tolls must incorporate some information about overall
network structure (including information about latency functions) if they are even to be weakly-
robust. Here, the approach is to show that for any fixed-toll mechanism in which all edge taxes
depend only on local edge properties, networks can be constructed in which the tolled total
latency is strictly worse than the un-tolled latency. This means that to systematically avoid
perverse incentives when applying fixed tolls to a routing problem, a system planner must allow
the tolls to depend on global information.

Fixed Tolls Cannot Be Strongly Robust

To begin, we ask if fixed tolls can ever be strongly robust to changes in latency functions.
One could imagine sudden changes to latency functions arising as a result of traffic accidents,
weather, or natural disasters; strong robustness to these would imply that optimal performance
would be incentivized regardless of the severity of the disturbance. We have the following easy
fact:

Proposition 4: Fixed tolls are not strongly robust on G to changes in latency functions.

Put differently, to guarantee optimal routing in general, fixed tolls require detailed characteriza-
tions of a network’s latency functions.

Proof: Here, the network topology (V,E), path set P , and total traffic rate r are held
constant while latency functions {`} are varied. Note from (7) that to disprove strong robustness
on general networks G, it suffices to exhibit two networks G and G∗ that differ only in their
latency functions for which Lnf(G, τ ft(G)) = L∗(G) and Lnf(G∗, τ ft(G)) > L∗(G∗). To achieve
this, consider a perturbed version of Pigou’s network. In Pigou’s network, a fixed toll of 1/2

on the upper congestible link incentivized optimal routing. This fixed toll was computed for
a network whose lower link latency function was given precisely by `2(f2) = 1; what if,
instead of 1, the lower latency function was some unknown constant b? To be precise, let Gb

represent Pigou’s network with `2(f2) = b so that G1 represents the nominal Pigou network. To
ascertain whether fixed tolls can be strongly robust on Pigou’s network, consider the quantity
Lnf(Gb, τ

ft(G1)) which represents the total latency on perturbed network Gb resulting from tolls
computed for nominal G1. If fixed tolls τ ft are strongly robust, then for each b, it will be true
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that Lnf(Gb, τ
ft(G1)) = L∗(Gb). Thus, the robustness of τ ft can be checked by varying b in the

following price-of-anarchy-like expression:

PoA(b) ,
Lnf
(
Gb, τ

ft(G1)
)

L∗(Gb)
. (13)

In Figure 6, PoA(b) is plotted as b varies between 0 and 1.5 for two sets of tolls: the
solid curve corresponds to tolls computed for b = 1, and the dashed curve corresponds to tolls
equal to 0. Note that the fixed toll only incentivizes perfectly efficient behavior exactly at b = 1

(that is, PoA(1) = 1). For all other values, PoA(b) > 1, which means that tolls lead to worse-
than-optimal total latencies for b 6= 1, or Lnf(Gb, τ

ft(G1)) > L∗(Gb), showing that these tolls
are not strongly robust. Note that here we only checked the single fixed toll τ1 = 1/2, but it
is easy to show that on this network, this toll is equivalent in all respects to any set of tolls
for which τ1 − τ2 = 1/2, so assuming that τ2 = 0 is without loss of generality. Put differently,
the optimal fixed tolls for G1 are essentially unique, so we have shown that there can exist
no fixed-toll taxation mechanism on G (and by extension on G) that is robust to variations of
latency functions.

Fixed Tolls and Rate-Dependence

We next investigate the robustness of fixed tolls along a different dimension: overall traffic
rate. Even if fixed tolls are not robust to latency function changes, perhaps they can be robust to
variations of the traffic rate. To this end, we return to the Braess’s Paradox network of Figure 3.
Now, suppose that r, the total amount of traffic on the network, is not fixed at 1, but can take any
value between 0 and 1. Let Gr represent the Braess’s Paradox network with r units of traffic, so
the canonical version is simply given by G1. Let τBraess(G1) simply be the toll design proposed
earlier: a single fixed toll of 1 on the center zero-latency link. Note that unlike Pigou’s example,
this toll is far from unique – but since it incentivizes optimal flows on G1, it is an adequate
starting point.

As for Pigou, the robustness of τBraess can be checked by varying r in the following
price-of-anarchy-like expression:

PoA(r) ,
Lnf
(
Gr, τ

Braess(G1)
)

L∗(Gr)
. (14)

It has already been shown that for r = 1, the optimal flow has no traffic on the center
zero-cost link, so the proposed fixed toll achieves the goal of enforcing optimal flows. On the
other hand, if r ≤ 0.5, the optimal flow is to send all the traffic on the center zero-cost link, so
that no traffic uses the constant-latency links. Unfortunately, the fixed toll on the center link is
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Figure 6. Pigou’s Network: fixed tolls applied to the “wrong” network. Depicted here is an
analysis of the robustness of fixed tolls to variations in latency functions. On the left, a Pigou-
style network has a fixed toll of 1/2 charged to the upper link; this toll incentivizes optimal
behavior when the lower latency function satisfies `(f) = 1. To investigate the robustness of
fixed tolls to network variations, the toll is held constant while the lower-link latency function b
is allowed to vary between 0 and 1.5. For each value of b, the total latency of tolled and un-tolled
Nash flows as well as the optimal total latency for that particular value of b are recorded. Finally,
the price of anarchy curves are generated by dividing the Nash latencies by the respective optimal
latency for each b. Note that the tolled price of anarchy is only 1 when b = 1; that is, this fixed
toll only incentivizes optimal behavior on the specific network for which it was designed. The
fact that the toll does not incentivize optimal behavior for all networks proves Proposition 4,
stating that fixed tolls are not strongly robust to latency function variations.

still boldly incentivizing all users to avoid the now-optimal center link. In Figure 7, the price
of anarchy from (14) is plotted as a function of r with and without the fixed toll on the center
link. Note that the tolled curve in Figure 7 increases rapidly as r approaches 0, quickly driving
the price of anarchy above the un-tolled maximum of 4/3; by setting r low enough, the price
of anarchy in this instance can be made arbitrarily high.

Here, despite the unbounded price of anarchy, this does not immediately imply that fixed
tolls are not weakly robust to rate changes, merely that this particular toll is not weakly robust.
This example does demonstrate that great care must be taken with fixed tolls when the total
traffic rate is varying or unknown, because fixed tolls designed for one demand profile can cause
arbitrarily poor performance under a different demand profile.
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Figure 7. Braess’ network: perverse incentives piled on top of unintended consequences.
Following on the classical Braess’s paradox (see Figure 3), this figure depicts an attempt to
redeem the pathological network augmentation with a simple fixed toll. If a toll of 1 is levied
on the link connecting the two intermediate nodes, it is simple to show that no traffic will ever
use that link. Unfortunately, for low traffic rates (particularly when the total mass of traffic is
less than 0.5), it is actually optimal for traffic to use the center link, but the rigid fixed toll
prevents this. On the right is plotted the price of anarchy as a function of the total traffic rate;
note that under the influence of tolls, the price of anarchy can become arbitrarily large as traffic
approaches 0 – despite the fact that with no tolls, the price of anarchy can never exceed 4/3.

Weakly Robust Fixed Tolls Must Depend on Network Structure

A fundamental problem with the fixed tolls applied to an uncertain Pigou network (as in
Figure 6) was that the correct toll on the upper edge depended on the latency function of the lower
edge; if the lower latency function was unknown, there was no way to compute an optimal toll
on the upper edge, so fixed tolls could not be strongly robust. This prompts the question: could
weakly robust fixed tolls be designed by letting the tolling function for edge e depend only on
the local latency function `e? Such a taxation mechanism is called network-agnostic, prescribing
tolling functions to edges without knowledge of how exactly the edges will be connected. Thus, a
network-agnostic taxation mechanism τ na is simply a mapping from latency functions to tolling
functions so τe(fe) (the tolling function on edge e) is given by τ na(`e). If a taxation mechanism
is network-agnostic, then each edge toll depends only on local information, so any efficiency
guarantees are automatically robust to changes in network structure.

20



Considering network-agnostic tolls, the robustness notion of “designing tolls for one
network and applying them to another” must be slightly refined: as networks are varied, we
assume that the tolling function τe has access to information only about the local latency function
`e, but has no information about the location of e in the network or about the other latency
functions in the network. One way to view this is that the toll-designer pre-commits to a tolling
function for each possible latency function without specific knowledge of which latency functions
will appear in the final realization. Thus, the notation of (8) can be simplified by writing Lnf(G, τ )

to mean the total latency of a Nash flow on network G resulting from the tolls generated by
taxation mechanism τ , and Lnf(G, ∅) to mean the total latency of a Nash flow on G with no
tolls. This leads to the main result about the lack of robustness of fixed tolls:

Theorem 5: The only nonnegative network-agnostic fixed tolls that are weakly robust to
network variations satisfy

τe = 0 (15)

for all possible network edges.

Theorem 5 shows that positive fixed tolls must in general require some global information
about network structure (e.g., network topology or latency functions) in order to ensure that
they do not cause harm, even for the simple setting of homogeneous populations. Theorem 5
is proved with a series of simple example networks. This shows that even on simple networks,
fixed tolls lack robustness, suggesting that complex networks could exhibit even more severe
pathologies.

Proof: Let τ naft be a network-agnostic taxation mechanism such that for any network G,
Lnf(G, τ naft) ≤ Lnf(G, ∅). Write the toll assigned to an edge with latency function ` as τ naft(`).

First, consider the network shown in Figure 8(a) in which the latency functions satisfy
`1 + `2 = `3. The flow (1/2, 1/2) is both a Nash flow and an optimal flow; the only tolls which
will always support this must satisfy τ naft(`1) + τ naft(`2) = τ naft(`3). This is the first condition
on τ naft:

`1 + `2 = `3 =⇒ τ naft(`1) + τ naft(`2) = τ naft(`3). (16)

Next, consider the network shown in Figure 8(b), a two-link parallel network with degree-d
monomial cost functions `1(f1) = α(f1)

d and `2(f2) = β(f2)
d. It can be shown that the optimal

flow on this network is equal to the untolled Nash flow for any α > 0, β > 0, and d ≥ 1.
Thus, the tolls on each link must be equal; otherwise, the tolled flow will have a strictly higher
total latency than the un-tolled flow. That is, all monomials of the same degree must be charged
the same toll, regardless of the scale of the latency function: τ naft

(
αfd

)
= τ naft

(
βfd

)
. In
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Figure 8. Networks used to prove Theorem 5, showing that any network-agnostic fixed-toll
taxation mechanism must charge taxes of 0 on every link. The network in (a) is used to show
that network-agnostic fixed-toll taxation mechanism τ naft is additive in latency functions. Next,
(b) is used to show in conjunction with (a) that monomial cost functions of any degree must
be assigned a zero toll. Finally, in (c), for any general latency function `1, it is shown how to
create a polynomial latency function `2 which is more congestible at equilibrium than `1, so that
a positive toll charged on `1 would increase the total latency of the network. Thus it is shown
that network-agnostic fixed tolls must charge 0 on every edge or they risk increasing the total
latency compared to un-tolled networks.

particular, letting β = 2α and appealing to (16), it holds that that 2τ naft
(
αfd

)
= τ naft

(
2αfd

)
,

which implies the second condition on τ naft:

for all α > 0 and d ≥ 1, τ naft
(
αfd

)
= 0. (17)

Using this fact regarding polynomials, positive fixed tolls on any other latency function
can now be ruled out. Refer to Figure 8(c), another two-link parallel network. Given an arbitrary
convex latency function ` (with flow derivative `′) on the upper link, it is possible to design a
polynomial latency function for the lower link `2(f2) = α(f2)

d to show that τ naft(`) = 0. Let
the polynomial degree satisfy d > `(1/2)

2`′(1/2)
, and coefficient satisfy α = 2d`(1/2). Then by design,

the un-tolled Nash flow on the network is (1/2, 1/2), and at this flow, shifting any positive mass
of traffic from the upper link to the lower link strictly increases the total latency on the network.
To avoid this, the toll on the upper link must be zero: τ naft(`) = 0. Since ` is an arbitrary convex
latency function, the theorem is proved.

22



Paying for Optimality: Network-Agnostic Fixed Subsidies

Theorem 5 (regarding the lack of weak robustness of fixed tolls) carefully specified that
the fixed tolls in question be nonnegative – and this prompts the question of negative tolls, i.e.,
subsidies. It turns out that for the special case of linear-latency networks, strongly robust network-
agnostic fixed subsidies do exist. For a linear latency function of the form `e(fe) = aefe + be,
the corresponding network-agnostic fixed subsidy (represented as a negative toll) is given by

τ subsidye = −be
2
. (18)

By simply paying users half the constant-term cost on each link, optimal flows can be incentivized
as Nash flows. As a side note, these subsidies are a special case of the “variable price schemes”
of [25] with η̄ = 1.

To show the optimality of these subsidies, the cost functions resulting from these subsidies
can be related to the cost functions resulting from standard marginal-cost tolls τmc (see (9)),
given in this case by τmc

e = aefe. Recall that for homogeneous users, marginal-cost tolls are
known to induce optimal Nash flows. Under the homogeneous-user model, the cost functions
resulting from the network agnostic fixed subsidies are

J subsidy
e (fe) = aefe + be︸ ︷︷ ︸

`e

− be
2︸︷︷︸
τe

= aefe +
be
2
, (19)

while the cost functions resulting from marginal-cost tolls are

Jmc
e (fe) = 2aefe + be. (20)

Since these two cost functions are related by a constant multiplicative factor for all agents (i.e.,
Jmc = 2J subsidy), they induce the same optimal Nash flows, and these subsidies inherit the strong
robustness of marginal-cost tolls. While these strongly robust network-agnostic fixed subsidies
are theoretically appealing, it is not clear that the concept generalizes beyond linear cost functions
or homogeneous users.

Are marginal-cost tolls robust for heterogeneous users?

The strong robustness guarantees of marginal-cost tolls have been proved by [24], [25] in
the setting of homogeneous known-sensitivity users; do these guarantees carry over to the more
detailed heterogeneous model? As a first step towards studying robust taxation mechanisms for
heterogeneous users, the performance of “off-the-shelf” marginal-cost tolls is investigated on
simple price-sensitive settings.

In Pigou’s network, the marginal-cost taxation mechanism τmc assigns a flow-varying toll
of τmc

1 (f1) = f1 to the upper link; for homogeneous users, this incentivizes optimal routing. What
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if the users’ sensitivities remained homogeneous, but took on some unknown value other than 1?
We can employ a parallel argument to that seen for fixed tolls in Proposition 4: Write Gs to denote
Pigou’s network in which all users have sensitivity s. To ascertain whether marginal-cost tolls
can be strongly robust to sensitivity variations, consider the quantity Lnf(Gs, τ

mc(G1)), which
represents the total latency on the perturbed population in Gs resulting from marginal-cost tolls
computed for unit-sensitivity G1. If marginal-cost tolls τmc(G1) are strongly robust, then for each
s, it will be true that Lnf(Gs, τ

mc(G1)) = L∗(Gs). Since the optimal flow on a network does not
depend on the user sensitivities, this is simply equivalent to writing Lnf(Gs, τ

mc(G1)) = 0.75.

In Figure 9, Lnf(Gs, τ
mc(G1)) is plotted as s varies between 0 and 2. Note that the

marginal-cost toll only incentivizes perfectly efficient behavior exactly at s = 1. For all other
values, the total latency is strictly greater than the optimal 0.75, showing that these tolls are not
strongly robust. This implies that when considering user price-sensitivity, marginal-cost tolls are
not strongly robust to sensitivity variations, even in the simplified setting of homogeneous users
on Pigou’s network.

Perverse Marginal-Cost Tolls For Heterogeneous Users

Here, we ask a similar question of marginal-cost tolls in the heterogeneous model to
that asked for fixed tolls in the homogeneous model: Despite lacking strong robustness to
user sensitivities, is it at least possible to show that marginal-cost tolls are weakly robust?
Unfortunately, in general settings, it is possible to show that even marginal-cost tolls can
incentivize flows that are strictly worse than their un-tolled counterparts, thus lacking even
weak robustness to heterogeneity. Consider the network and demand profile in Figure 10. This
is essentially a three-link network; a population of mass 0.5 has access only to the upper two
links, and a population of mass 1 has access only to the lower two links. The optimal flow has
all users from the upper population using the center (congestible) link and all users from the
lower population using the lower link. In the unique un-tolled Nash flow, half the traffic from
the lower link has shifted to the center link so as to equalize the latencies of those two links.

Note that the un-tolled version bears a strong resemblance to Pigou’s example if the upper
link is ignored: self-interested users from the lower source have over-congested the center link
and degraded its performance. To see how tolls can make things even worse, suppose that the
upper population is toll-sensitive (with sensitivities equal to 1), but the lower population is not
(i.e., they have sensitivities close to 0). The insensitivity of the lower population effectively fixes
the flow on the center link at 1, since this is the flow that equalizes the latencies of the lower two
links. That is, regardless of what the upper population does, the center link flow will always be
1. Thus, marginal-cost tolls on this network serve only to force the upper population to choose
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Figure 9. A setting in which marginal-cost tolls are shown not to be strongly robust to variations
of user sensitivity. Depicted is the canonical Pigou Network with marginal-cost toll τmc(f) =

f assigned to the top link. If marginal-cost tolls were strongly robust to variations of user
sensitivities, they would incentivize optimal flows for every user sensitivity profile. To check this,
tolls are chosen without a priori knowledge of the user sensitivities, and then the population’s
homogeneous sensitivity is swept from 0 to 2 and the resulting total latency is plotted. It is
evident from the plot that the optimal total latency is only obtained when the user sensitivities
are exactly 1; all other sensitivity values incentivize some suboptimal total latency L(f) > 0.75.
Thus, marginal-cost tolls are not strongly robust to variations of user sensitivity.

the upper link, resulting in the flow depicted on the right in Figure 10. This pathological flow
has a total latency of 1.75, which corresponds to a price of anarchy of 1.4. This is greater than
the 4/3 guaranteed as a worst-case on linear-latency networks, demonstrating that marginal-
cost tolls lack even weak robustness for heterogeneous populations. In this case, instead of
incentivizing altruism, marginal-cost tolls simply amplified the selfishness-induced inefficiency
that was already present. This allows us to state the following fact:

Proposition 6: Marginal-cost tolls (9) are not weakly-robust on G to variations of user
sensitivities.

Proof: Let G denote the routing game in Figure 10. Per the above analysis, τmc induces a
Nash total latency of Lnf(G, τmc(G)) = 1.75, but the un-tolled total latency is Lnf(G, ∅) = 1.5;
since the tolled total latency is strictly worse, τmc cannot be weakly robust to heterogeneous
user sensitivities.
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Figure 10. A network demonstrating that marginal-cost tolls are not weakly robust to user
heterogeneity. This figure depicts a simple two-source network in which 0.5 units of traffic route
from the upper (green) source, and 1 unit of traffic routes from the lower (orange) source. If
traffic from the upper source trades off time and money equally (i.e., s ≡ 1), but traffic from the
lower source cares only about time (i.e., s ≡ 0), marginal-cost tolls result in a price of anarchy
of 1.4 on this network. The optimal flow here requires all of the traffic from the lower source to
use the lower, constant-latency link. However, only the traffic from the upper source responds
to tolls; when marginal-cost tolls are levied, all of the upper-source (green traffic) moves to the
inefficient upper path, and the lower-source (orange) traffic moves to replace it on the middle
path, as depicted on the right.

As a side note, the most extreme pathology in this example arises when the lower population
has a sensitivity of 0, but perversities still arise for any low, positive sensitivity. That is, the poor
performance in this example can still occur when every agent has a nonzero price-sensitivity.

Conclusion

Using Pigou’s example, it was shown in Proposition 4 that fixed tolls can never be strongly
robust to network variations; using Braess’s Paradox, it was suggested that fixed tolls are not
robust to rate variations either. Subsequently, Theorem 5 showed that fixed tolls cannot even
be weakly robust if they do not depend on global network information. Finally, Proposition 6
showed on the new example depicted in Figure 10 that marginal-cost tolls cannot even be weakly
robust to heterogeneous price sensitivities in general. All of these results were shown using very
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simple networks; increasing the complexity of networks would likely only degrade worst-case
performance.

There are many open questions in this domain. For instance, marginal-cost tolls do not
require knowledge of the other latency functions in the network, but (9) makes it clear that the
tolling function on edge e strongly depends on the specific latency function `e. It remains an open
question how mischaracterizations of local latency functions impact the congestion-minimizing
guarantees of marginal-cost tolls. One possible approach for studying this could be to restrict
attention to linear latency functions of the form `e(fe) = aefe + be, and assume that the true
coefficients ae and be were only known to exist in some range [ā− δ, ā+ δ] and [b̄− δ, b̄+ δ] for
some nominal ā and b̄. It seems reasonable to conjecture that if δ > 0, marginal-cost tolls cease
to be strongly robust, but it would be interesting to ask in what settings they remain weakly
robust for homogeneous users.

The examples and results in this article demonstrate some of the diverse challenges in
social coordination in uncertain environments, and they may leave the reader with the unsettling
question “can we guarantee anything without knowing everything?” As the previous examples
have shown, the answers to this question are complex and nuanced; ultimately, what is needed is
a characterization of the fundamental relationship between the amount of information a taxation
methodology requires, the sophistication of the mechanism, and the efficiency guarantees it
can provide under uncertainty. Fixed tolls assign relatively “unsophisticated” tolling functions
(being merely constant functions of flow), but appear to require a great deal of information to
enforce optimal flows. Thus, they apparently sacrifice robustness for simplicity. Marginal-cost
tolls enforce optimal flows with a greater degree of robustness, doing so by allowing more-
sophisticated flow-varying tolling functions. However, Proposition 6 shows that they are not so
sophisticated that they can prevent all pathologies from arising when agents are heterogeneous.

Throughout this article, the exclusive focus has been on static equilibrium analysis from a
worst-case perspective. Robustness as defined in (7) and (8) is essentially a worst-case metric; if
a single pair of routing problems exhibit a pathology in response to some taxation mechanism,
that is sufficient to disprove robustness of the taxation mechanism. However, a similar analysis
could be done from a stochastic perspective: a corresponding notion of robustness could focus
on avoiding pathologies in expectation over random networks drawn from some appropriate
distribution.

Research on robust social influence has conceptual applications in many areas beyond
routing games; any setting in which social systems are enmeshed with engineered systems seems
fertile ground for similar analysis to that surveyed in this article.
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Sidebar 1: Computing Price of Anarchy Bounds

The concept known as “price of anarchy,” a measure of the inefficiency of selfish
behavior, was first rigorously studied in the area of routing games in [33], and has found far-
reaching applications in fields as diverse as supply-chain management [45], auction theory [46],
telecommunication systems [47], and others. Price of anarchy is defined generally as follows:
In a class of games G, suppose a k-player game G ∈ G has outcomes denoted by x and some
global cost function to be minimized C(x) =

∑k
i=1Ci(x). The price of anarchy is defined as

PoA(G) , max
G∈G

C(xne)

min
x
C(x)

, (S1)

where xne is a Nash equilibrium. That is, price of anarchy is a worst-case measure over all
games in G of the performance degradation due to selfish behavior.

There is no universal technique for computing exact worst-case equilibria for an arbitrary
game, but there do exist methods which can simplify the process of upper-bounding the worst-
case performance of equilibria. One such method is known as (λ, µ)-smoothness. The approach
is as follows: Suppose it can be shown for games in G that the following is true for some λ > 0

and µ < 1 and all outcomes x and x∗:
k∑
i=1

Ci (x
∗
i , x−i) ≤ λC(x∗) + µC(x), (S2)

where the notation (x∗i , x−i) indicates that player i is playing according to action profile x∗, and
all players different from i are playing according to action profile x. In this case, the following
bound holds on the price of anarchy of G:

PoA(G) ≤ λ

1− µ
. (S3)

Thus, computing an upper bound on the price of anarchy reduces to finding the (λ, µ)

parameters which make the inequality in (S3) as tight as possible. While this may seem a
daunting task, it has proved useful in computing price of anarchy bounds in many settings,
including mechanism design [48], machine scheduling [49], and a variety of network routing
problems [50]. In the case of affine-cost routing games, it can be shown that λ = 1 and µ = 1/4,
implying a price of anarchy of 4/3.
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Sidebar 2: Elastic Traffic

The results in this article consider only the case of inelastic traffic; that is, all drivers
have been required to arrive at their destination, regardless of cost. A more detailed model may
consider the elastic demand case, assuming that each user has a cost threshold; if the total cost of
travel exceeds this threshold, he will simply decide to “stay home.” It turns out that marginal-cost
tolls preserve their robustness characteristics in the elastic model.

Under an elastic demand model, the system-planner’s goal is to maximize a linear
combination of aggregate travel benefit minus congestion costs; this objective is called social
welfare maximization. For simplicity, consider the case of parallel networks.

We model the user population as the interval [0, r], and define a continuous nonincreasing
value-of-travel function v : [0, r] → R that assigns each user x ∈ [0, r] a cost threshold.
Assuming that v is nonincreasing is equivalent to assuming without loss of generality that the
user population is sorted in decreasing order of value-of-travel. Given a flow f , the utility of
user x ∈ [0, r] on edge e is given by

U f
e (x) = v(x)− (`e(fe) + τe(fe)) . (S4)

If this quantity is negative for all edges in the network, user x will choose to stay home, as
the total cost of commuting is higher than the user’s value-of-travel. It is easily shown that in
equilibrium, all users using the network have higher values than the users who stay home; write
x∗ to denote the lowest-value user who chooses to travel. The planner’s objective, the social
welfare W , is defined by the following:

W (x∗, f) =

∫ x∗

0

v(t)dt− L(f), (S5)

simply the difference between the total value obtained by users who choose to commute and the
total latency of the resulting flow.

In [25], the author shows that in this elastic case, marginal-cost tolls maximize the social
welfare for any valuation profile v without requiring that the system planner know anything
about the specific valuation profile. In the language of robustness, a theorem from [25] can be
rephrased as

Theorem 7 (Sandholm, 2002 [25]): Marginal-cost tolls are strongly robust to variations in
user elasticity profiles v.

Thus, in addition to being robust to all the parameters previously discussed, marginal-cost toll
are also robust to populations with unknown elasticity.
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What if the user population is heterogeneous in price-sensitivity? To investigate the
robustness of marginal-cost tolls to variations in elasticity for heterogeneous populations, we
adopt the simple setting of Pigou’s network (see Figure 2) and study the performance of a
variety of scaled marginal-cost tolls for a specific family of value-of-travel functions. The value-
of-travel functions in question satisfy

v(x) = v̄ − x. (S6)

Tolls of κf1 are applied to the congestible link for various values of κ ∈ [0, 1]. For each
v̄ ∈ [1, 2] and κ ∈ [0, 1], the worst-case social welfare Wmax(v̄, κ) is found by searching over
the space of (possibly heterogeneous) populations with price sensitivities between SL = 0.1 and
SU = 10. This worst-case social welfare is then normalized by the optimal social welfare for
the corresponding v̄, and plotted in Figure S1.

In Figure S1, the blue dots correspond to the optimal choice of κ for any v̄. Note that the
optimal κ depends on v̄, and that furthermore, no combination of κ and v̄ achieves the optimal
social welfare (that is, a normalized social welfare of 1); this implies that scaled marginal-cost
tolls are not strongly robust to mischaracterizations of elasticity in a heterogeneous-user model.
However, the question of weak robustness is still open; this study was for a very simple class
of networks and elasticity profiles and it may be that increasingly complex settings will further
demonstrate that these tolls are not even weakly robust.
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Figure S1. Empirical results for finding the optimal robust tolls for elastic traffic. Depicted are
the results of simulating scaled marginal-cost tolls applied to Pigou’s Network (see Figure 2)
when traffic is both elastic and price-sensitive. The elasticity is modeled by value-of-travel
function v(x) = v̄ − x; if the minimum cost of travel on the network exceeds v(x), then user
x will stay home. The right horizontal axis represents a scalar κ on marginal-cost tolls and
the left horizontal axis represents the relative elasticity of the population v̄ (high values of v̄
correspond to highly-inelastic traffic). The surface of the plot is the minimum social welfare
(divided by the optimal social welfare) on the network resulting from a given toll scalar and
elasticity parameter. The key thing to note on this plot is that the optimal choice of toll scalar κ
(denoted on the plot by small blue circles) depends on the elasticity parameter v̄ (that is, tolls
depend on the value-of-travel functions); this is not true in the homogeneous-user model of [25]
in which marginal-cost tolls optimize social welfare for all elasticity profiles. This indicates that
if users are heterogeneous, marginal-cost tolls are no longer robust to mischaracterizations of a
population’s elasticity.
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Sidebar 3: Budget-Balanced Tolls

Recent work has investigated the application of budget-balanced tolls to a network routing
problem. Here, the planner has no net revenue but rather returns all tolls collected on some
links as subsidies on the remaining links. This is an attractive approach when it is desirable to
include the tolls paid as part of the system cost, since the net tolls paid will always be zero.
Budget-balance is a condition which could lead to hopelessly complicated tolling functions for
large networks if not properly computed: since everything paid on one edge must be returned
to users on other edges, in principle the toll charged on one edge could actually be a function
of the flows on all other edges. Fortunately, [41] provides an algorithm for computing budget-
balanced tolls for any network which enforce optimal flows for homogeneous populations, and
each edge’s toll is a function of only that edge’s flow.

The algorithm from [41] for optimal budget-balanced tolls prescribes a family of tolls for
Pigou’s Example (refer to Figure 2 for this example) parameterized by a number q ≥ 0:

τ1(f1) = q (2− 1/f1) + 1/4 (S7)

τ2(f2) = q (2− 1/f2) + 1/4 (1− 1/f2) . (S8)

The q parameter represents the degree to which the upper-link-toll is flow-varying. To see that
these are in fact budget-balanced, it is necessary to distinguish between the toll charged on
an edge and the revenue collected from that edge: the revenue collected is given by the toll
multiplied by the flow. Combining this with the fact that f2 = 1− f1, it is simple to verify that
the edge revenues are equal and opposite, or f1 · τ1(f1) = −f2 · τ2(f2), for all feasible flows.

The simplest case has q = 0 (so that the upper link toll is simply 1/4), but any nonnegative
value of q induces optimal flows for homogeneous unit-sensitivity populations. As a preliminary
investigation into the robustness of these tolls to mischaracterizations of user sensitivity, Nash
flows are computed as a function of homogeneous sensitivity for various values of q. This plot is
shown in Figure S2; naturally, when the sensitivity parameter is equal to 1, the price of anarchy
is equal to 1, since this is the sensitivity for which the tolls were designed. Note that for q = 1,
the price of anarchy is within 1% of optimal for a large range of sensitivities. Furthermore,
larger values of q yield a lower price of anarchy for all sensitivity values plotted, suggesting
that strongly flow-varying tolls may play an important role in sensitivity-robustness.

For a sense of why a budget-balance constraint in this particular case may confer sensitivity-
robustness, consider carefully the tolling functions in (S7) and (S8). Note that near the optimal
flow of (1/2, 1/2), both tolling functions are rather gently flow-varying, but that near either
extreme point of (0, 1) or (1, 0), users on the low-flow link are being paid extremely large
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subsidies. This is a simple consequence of a budget-balance constraint on a two-link network:
a large number of people paying a small toll on one road implies a small number of people
receiving a large subsidy on the other road. From a robustness standpoint, this effect serves
to buffer the damage that extremely-high or extremely-low sensitivity agents can cause. Of
course, this is far from a comprehensive study on the robustness of budget-balanced tolls, and
the apparent robustness seen here could simply be a artifact of the simplified setting of Pigou’s
network.
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Figure S2. Empirical study on the sensitivity-robustness of budget-balanced tolls. Budget-
balanced tolls were computed for a unit-sensitivity homogeneous population on Pigou’s network
(refer to Figure 2) by the procedure prescribed in [41]; the q parameter describes to what extent
the tolling function on edge 1 is flow-varying. Once computed, the population’s price sensitivity
was varied from 0.01 to 1000 and the resulting price of anarchy was plotted. For q = 1, the
best case, the price of anarchy is within 1% of optimal for all sensitivities plotted greater than
about 0.33, indicating a high level of robustness to mischaracterizations of user sensitivity. Note
that for all sensitivities plotted, larger values of q correspond to lower values for the price of
anarchy; indicating that strongly flow-varying tolls may play an important role in robustness.
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