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Abstract— In engineered systems whose performance de-
pends on user behavior, it is often desirable to influence be-
havior in an effort to achieve performance objectives. However,
doing so naively can have unintended consequences; in the
worst cases, a poorly-designed behavior-influencing mechanism
can create a perverse incentive which encourages adverse user
behavior. For example, in transportation networks, marginal-
cost tolls have been studied as a means to incentivize low-
congestion network routing, but have typically been analyzed
under the assumption that all network users value their time
equally. If this assumption is relaxed, marginal-cost tolls can
create perverse incentives which increase network congestion
above un-tolled levels. In this paper, we prove that if some
network users are unresponsive to tolls, any taxation mechanism
that does not depend on network structure can create perverse
incentives. Thus, to systematically avoid perverse incentives, a
taxation mechanism must be network-aware to some extent.
On the other hand, we show that a small amount of additional
information can mitigate this negative result; for example, we
show that it is relatively easy to avoid perverse incentives on
affine-cost parallel-path networks, and we fully characterize the
taxation mechanisms that minimize congestion for worst-case
user populations on such networks.

I. INTRODUCTION

Many of today’s engineered systems are richly connected
with their users; economic, social, and technical objectives
are often interconnected in complex ways. Examples of
this can be found in ridesharing systems [1], transportation
networks [2], and power grids [3]. As the interconnections
between social and engineered systems increase, the engi-
neer’s task increasingly includes influencing the behavior of
system users. Accordingly, recent research has focused on
developing new analytical tools for influencing social behav-
ior to achieve engineering objectives [4]–[8]. One intrinsic
challenge in this setting is that of uncertainty in the social
systems to be influenced. It can be difficult to characterize
user preferences and decision-making processes in a social
system, and any behavior-influencing mechanism must take
this uncertainty into account. This has led to recent efforts
to develop behavior-influencing mechanisms that are robust
to a wide range of possible mischaracterizations [9]–[12].

One particular area of interest is that of influencing
drivers’ routing choices in transportation networks. It is well-
known that if individual drivers choose their own routes
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through a congestible network to minimize their personal de-
lay, the resulting aggregate network delay can be significantly
worse than optimal [13]. Recent research has suggested
levying road taxes, thereby modifying agents’ costs and in-
centivizing more-efficient network flows. Many such taxation
schemes require the tax-designer to have a perfect character-
ization of all underlying system variables: network topology,
road congestion characteristics, user tax-sensitivities, and
overall demand. Given such a perfect characterization, it
is known that a system planner can design taxes which
incentivize optimal network flows [14]–[16]. Unfortunately,
recent results have demonstrated that taxes designed for
one problem instance can incentivize inefficient behavior on
different (yet closely-related) instances, indicating that these
taxes lack robustness to system mischaracterizations.

In [17], the authors propose a semantic framework for
robustness as applied to behavior-influencing mechanisms. In
this framework, taxes are designed for some nominal routing
problem, and the problem is then perturbed in a variety of
ways. For each perturbed routing problem, the congestion
induced by the original taxes is then compared to two
benchmarks: the optimal aggregate delay on the perturbed
problem, and the delay of an un-influenced flow on the
perturbed problem. The taxes are said to be strongly robust to
that type of perturbation if the nominal taxes induce optimal
flows on all perturbed networks. The taxes are said to be
weakly robust to the perturbation if on the perturbed networks
the flows incentivized by the nominal taxes are never worse
than un-influenced flows. That is, if a taxation mechanism is
weakly robust, the system planner can be certain that taxing
is always at least as good as not taxing; alternatively, these
taxes will never create perverse incentives.

A prominent example of a strongly-robust taxation mech-
anism is that of marginal-cost tolls, which are known to
incentivize optimal network flows without requiring a priori
knowledge of user demand or network topology provided
that all users trade off time and money equally [18], [19]. An
attractive feature of marginal-cost tolls is that the toll on each
network link depends only on that link’s flow and congestion
properties, and can be computed without any information
about overall network topology. This property is known
as network-agnosticity, and is a desirable characteristic of
any taxation mechanism since by construction it confers
robustness to variations in network structure.

However, recent research has suggested that this network-
agnosticity comes at a price; if network users have unknown
price-sensitivities, marginal-cost tolls fail to be strongly-
robust to mischaracterizations of user price-sensitivity [17].
Unfortunately, in the most general networks, if users have



diverse price-sensitivities, off-the-shelf marginal-cost tolls
are not even weakly robust [17]; this is demonstrated in
Example 2.1 in this paper. Put plainly, marginal-cost tolls
can create perverse incentives if applied naively. Despite
this fact, [9], [20] show that for parallel networks subject to
a particular utilization constraint, scaled marginal-cost tolls
(and affine tolls, a closely-related variant) are weakly robust.
This indicates that if the toll-designer has additional infor-
mation about the routing problem setting (e.g., information
about the allowable class of networks), the weak-robustness
of marginal-cost tolls may be recovered.

Accordingly, the central goal of this paper is to understand
the relationship between robustness and network-agnosticity
more fully, and determine specifically under what conditions
network-agnostic tolls can be weakly robust. To that end,
in our first and most general result we demonstrate that
if some users are unresponsive to tolls, the only weakly-
robust network-agnostic taxation mechanism is essentially
the taxation mechanism which charges zero tolls. That is,
to avoid perverse incentives, taxes must depend on some
information regarding network structure.

Fortunately, a taxation mechanism need not depend on
much additional information: our second result states that
for the class of affine-cost parallel-path networks, a weakly-
robust network-agnostic taxation mechanism always exists;
that is, knowledge of the class of allowable networks can
render weak robustness possible. We give a full characteriza-
tion of the space of weakly-robust network-agnostic taxation
mechanisms for this setting, and we derive the taxation
mechanism that minimizes network congestion in worst case
over any distribution of unknown user toll-sensitivities. This
is encouraging from the standpoint of a toll-designer, since it
suggests that a little additional information about the problem
setting can greatly expand the designer’s toolbox.

II. MODEL AND RELATED WORK

A. Routing Game

Consider a network routing problem in which a unit mass
of traffic needs to be routed across a network (V,E), which
consists of a vertex set V and edge set E ⊆ (V × V ). We
call a source/destination vertex pair (sc, tc) ∈ (V × V ) a
commodity, and the set of all commodities C. We assume
that for each c ∈ C, there is a mass of traffic rc > 0 that
needs to be routed from sc to tc. We write Pc ⊂ 2E to denote
the set of paths available to traffic in commodity c, where
each path p ∈ Pc consists of a set of edges connecting sc
to tc. Let P = ∪{Pc}. A network is called a parallel-path
network if for all paths p, p′ ∈ P , p ∩ p′ = ∅.

A feasible flow f ∈ R|P| is an assignment of traffic to
various paths such that for each commodity,

∑
p∈Pc

fp = rc,
where fp ≥ 0 denotes the mass of traffic on path p.

Given a flow f , the flow on edge e is given by fe =∑
p:e∈p fp. To characterize transit delay as a function of

traffic flow, each edge e ∈ E is associated with a specific
affine latency function `e(fe) = aefe + be, where ae ≥ 0
and be ≥ 0 are edge-specific constants. We measure the cost

of a flow f by the total latency, given by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(fp), (1)

where `p(f) =
∑
e∈p `e(fe) denotes the latency on path p.

We denote the flow that minimizes the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2)

All optimal flows f∗ have the same total latency.
A routing problem is given by G = (V,E, C, {`e}). The

set of all routing problems is written G.
To study the effect of taxes on self-interested behavior, we

model the above routing problem as a non-atomic congestion
game. We assign each edge e ∈ E a flow-dependent taxation
function τe : R+ → R+. To characterize users’ taxation
sensitivities, for each c ∈ C, let each user x ∈ [0, rc] have
a taxation sensitivity scx ∈ [SL, SU] ⊆ R+, where SL ≥
0 and SU ≤ +∞ are lower and upper sensitivity bounds,
respectively. Given a flow f , the cost that user x experiences
for using path p̃ ∈ Pc is of the form

Jx(f) =
∑
e∈p̃

[`e(fe) + scxτe(fe)] , (3)

and we assume that each user selects the lowest-cost path
from the available source-destination paths. We call a flow
f a Nash flow if for all commodities c ∈ C and all users
x ∈ [0, rc] we have

Jx(f) = min
p∈Pc

∑
e∈p

[`e(fe) + scxτe(fe)] . (4)

It is well-known that a Nash flow exists for any non-atomic
congestion game of the above form [21].

We assume that the sensitivity distribution function s is
unknown; for a given routing problem G, we define the set
of possible sensitivity distributions as the set of Lebesgue-
measurable functions SG = {sc : [0, rc]→ [SL, SU]}c∈C .

B. Taxation Mechanisms and Robustness

In this paper, we consider a particular type of taxation
mechanism which we term network-agnostic. Here, each
edge’s taxation function is computed using only locally-
available information. That is, τe(fe) depends only on `e,
not on edge e’s location in the network, the overall network
topology, the overall traffic rate, or the congestion properties
of any other edge. Network agnosticity is an abstraction
that allows us to discuss taxation mechanisms that do not
depend on network structure. A network-agnostic taxation
mechanism τ is essentially a mapping from latency functions
to taxation functions, and any edge taxation function is

τe(·) = τ(`e). (5)
To evaluate taxation mechanisms, we adopt the robustness

framework introduced in [17] in which a distinction is drawn
between strong and weak robustness. In either case, for each
network we compare the worst-case Nash congestion induced
by a particular taxation mechanism to two benchmarks:
first, the optimal total latency on the network; second, the
total latency of an un-influenced Nash flow on the network.



Formally, in the context of network-agnostic taxation mech-
anisms, we write Lnf(G, s, τ) to denote the total latency of
a Nash flow for routing problem G and population s induced
by taxation mechanism τ . We write Lnf(G, ∅) to denote the
total latency of an un-influenced Nash flow (note that when
there are no tolls, the sensitivity distribution plays no role),
and L∗(G) = L(f∗) to denote the optimal latency.

Taxation mechanism τ is said to be strongly robust if
for every network it induces optimal Nash flows for any
sensitivity distribution; that is, for all G ∈ G,

sup
s∈SG

Lnf(G, s, τ) = L∗(G). (6)

On the other hand, τ is said to be weakly robust if for every
network and sensitivity distribution, the total latency induced
by τ never exceeds the total latency of an un-influenced Nash
flow; i.e., for all G ∈ G,

sup
s∈SG

Lnf(G, s, τ) ≤ Lnf (G, ∅) . (7)

Weak robustness is a guarantee that perverse incentives will
never arise; note that at a minimum, it is always trivially true
that the zero-toll is weakly robust.

C. Related Work

Among the simplest tolls are fixed tolls, which for any
e ∈ G, τe(fe) = qe for some qe ≥ 0. However, if network,
traffic-rate, and user sensitivity specifications are not known
precisely and fixed tolls are restricted to be network-agnostic,
they fail to be weakly-robust [17].

A classic example of strongly-robust network-agnostic
tolls is that of the marginal-cost or Pigovian taxation mech-
anism τmc, which assigns taxation functions of

τmc (fe) = fe · `′e(fe), ∀fe ≥ 0, (8)

where `′ represents the flow derivative of `. In [18] the
authors show that for any G ∈ G, it is true that L∗(G) =
Lnf (G, s, τmc) , provided that all users have a sensitivity
equal to 1. Thus, by construction, marginal-cost tolls are
strongly-robust to perturbations of network structure and
traffic rate, since each taxation function has no dependence
on either. Unfortunately, the following example demonstrates
that marginal-cost tolls are not even weakly robust in multi-
commodity networks for heterogeneous populations.

Example 2.1: Consider the network depicted in Figure 1.
There are two source nodes; 0.5 units of traffic from the
upper source with sensitivity s1 share a common destination
with 1 unit of traffic from the lower source with sensitivity
s2. Marginal-cost tolls on this network are τi(fi) = fi on
paths 1 and 2. It is simple to verify that if all traffic trades
off time and money equally (i.e., s1 = s2 = 1), marginal-
cost tolls incentivize the optimal flow depicted on the left
of the figure (since at this flow, all agents have a cost of
1). However, if the upper-source traffic keeps s1 = 1 but
the lower-source traffic has s2 = 0 (i.e., they care only
about time), marginal-cost tolls create a perverse incentive,
resulting in the configuration depicted on the right in which
the high-sensitivity traffic experiences a cost of 2 on paths

Fig. 1. Example 2.1: A network demonstrating that marginal-cost tolls are
not weakly robust to user heterogeneity. This figure depicts a simple two-
source network in which 0.5 units of traffic route from the upper source,
and 1 unit of traffic routes from the lower source. If traffic from the upper
source trades off time and money equally (i.e., s ≡ 1), but traffic from the
lower source cares only about time (i.e., s ≡ 0), marginal-cost tolls create a
perverse incentive. The optimal flow here requires all of the traffic from the
lower source to the constant-latency link 3. However, only the traffic from
the upper source responds to tolls; when marginal-cost tolls are levied (a
toll of τi(fi) = fi on links 1 and 2), all of the upper-source traffic moves
to the inefficient path 1, and the lower-source traffic moves to replace it on
path 2, as depicted on the right. This results in a tolled total latency of 1.75
(0.5 units of traffic have a latency of 1.5, and 1 unit of traffic has a latency
of 1), greater than the un-tolled value of 1.5 (in which all 1.5 units of traffic
have latency 1). Note that this example exhibits perverse incentives even in
the case that user sensitivities do not actually take the value 0; all that is
required is that the lower-source traffic have low sensitivity.

1 and 2, and the low-sensitivity traffic experiences a cost of
1 on paths 2 and 3. This second flow exhibits higher total
latency than the un-tolled configuration. This proves the lack
of weak robustness of marginal-cost tolls in multicommodity
heterogeneous networks.

Moving past marginal-cost tolls, the authors of [20] exhibit
a universal taxation mechanism τu which assigns taxes of

τue (fe) = κu (aefe + be/2) , (9)
and show that on any multicommodity network, if SL > 0, it
is weakly-robust for large-enough κu. Here, SL > 0 implies
that user sensitivities are bounded away from zero; the κu
required for weak robustness depends on SL in general.
However, if the tax designer does not know a lower bound
on user sensitivities (i.e., SL = 0), our Theorem 3.1 shows
that τu fails to be weakly robust.

D. Summary of Our Contributions

In this paper, we present several contributions to the theory
of robust social influence for congestion games. We first
prove that weakly-robust network-agnostic tolls do not exist
in the most general settings; subsequently, we examine a
special subset of congestion games for which we prove that
weakly-robust network-agnostic tolls always exist.

In Theorem 3.1, we show that if SL = 0 (i.e., user sensi-
tivities can take arbitrarily-small values), network-agnosticity
and weak robustness are mutually exclusive for general
multicommodity networks with heterogeneous populations.
That is, given any network-agnostic taxation mechanism that
improves congestion on one routing problem, there exists a
network and user sensitivity distribution for which that taxa-
tion mechanism increases congestion above un-tolled levels.



Thus, perverse incentives cannot be systematically avoided
unless tolls exhibit some degree of network-dependence.
This is in sharp contrast to the universal tolls of [20] (see
Equation (9) in this paper), which are weakly-robust for
any network provided that κu is large enough and user
sensitivities are bounded away from zero.

In light of this negative result, we subsequently ask if
network-agnostic tolls can ever be weakly robust, and show
in Theorem 3.3 that knowledge of the class of allowable net-
works can mitigate the impossibility result of Theorem 3.1.
Specifically, we show that if networks are known to be
single-commodity parallel-path, there always exist network-
agnostic taxation mechanisms which are weakly robust.
Furthermore, for any toll upper-bound, we derive the specific
taxation mechanism that minimizes worst-case congestion
for any SL and SU. This is true without any restrictions on
the range of user sensitivities: unlike in Theorem 3.1, here
we allow SL = 0 and SU = +∞.

III. OUR CONTRIBUTIONS

A. Impossibility in Multicommodity Networks

Our first result considers the case that a toll-designer
wishes to design a network-agnostic taxation mechanism that
improves the efficiency of Nash flows on every network. The-
orem 3.1 shows that this is impossible on multicommodity
networks if user sensitivities are heterogeneous and are not
bounded away from 0. That is, if a network-agnostic taxation
mechanism improves congestion for one routing problem, it
must degrade congestion for another.

Theorem 3.1: For the class of all multicommodity affine-
latency networks, if SL = 0 and SU > 0, a network-agnostic
taxation mechanism τ is weakly robust if and only if for
every network G ∈ G and population s,

Lnf(G, s, τ) = Lnf(G, ∅). (10)

It is important to note that (10) is not a design criterion,
but rather a definition of triviality. We include this formalism
because there exist taxes which are non-zero, but exactly
mimic the effect of zero tolls. In general, these trivial taxes
are of the form τe(fe) = µ`e(fe) for some µ ≥ 0; since
these merely scale the game’s original latency functions, they
induce exactly the same Nash flows as un-influenced flows.

As a first step towards proving Theorem 3.1, in Lemma 3.2
we present necessary conditions for the weak robustness of
any network-agnostic taxation mechanism; we will subse-
quently show that any taxation mechanism satisfying these
conditions will fail to be weakly robust in certain multicom-
modity routing problems.

Lemma 3.2: For networks with affine cost functions, if
a network-agnostic taxation mechanism is weakly robust, it
assigns taxes given by

τe(fe) = κ1aefe + κ2be, (11)

for some κ1 ≥ 0 and κ2 ≥ 0, for every c ∈ C and every user
x ∈ [0, rc] coefficients κ1 and κ2 satisfy

scx (κ1 − κ2)
1 + scxκ2

∈ [0, 1] . (12)

The proof of Lemma 3.2 appears in the Appendix.
Proof of Theorem 3.1: We prove this by showing on the

network of Example 2.1 that if users are heterogeneous and
price-sensitivities can take a value of 0, no tolls satisfying
the conditions of Lemma 3.2 can be weakly-robust. Consider
the network depicted in Figure 1. Commodity c1 is a high-
sensitivity population with sensitivity s1 and mass 1/2 is
traveling from the upper source; commodity c2 is a low-
sensitivity population with sensitivity s2 and mass 1 is
traveling from the lower source; the populations (commodi-
ties) share a common destination. The paths are enumerated
{1, 2, 3} (from top to bottom, as in Figure 1), so P1 = {1, 2}
and P2 = {2, 3}.

Charge tolls on this network in accordance with
Lemma 3.2 (that is, specify κ1 and κ2 satisfying (12) for both
sc1x = s1 and sc2x = s2), and define γ1 and γ2 as follows:

γ1 =
s1(κ1 − κ2)
1 + s1κ2

, and γ2 =
s2(κ1 − κ2)
1 + s2κ2

. (13)

The upper population’s Nash-flow incentive constraint in-
duced by these tolls is given by

(1 + γ1)f1 + 1 = (1 + γ1)f2, (14)
and the lower population’s by

(1 + γ2)f2 = 1. (15)

It can be shown that any Nash flow for which γ2 ≤ γ1 must
satisfy (14) and (15); since the system of equations is upper-
triangular, f2 depends only on γ2:

f1 =
1

1 + γ2
− 1

1 + γ1
, and f2 =

1

1 + γ2
. (16)

In essence, the low-sensitivity population holds all the power;
the flow on path 2 is not affected by the sensitivities of the
high-sensitivity population.

Consider the definitions of γ1 and γ2; note that for any
fixed choice of κ1 and κ2, γ2 can be made arbitrarily-close
to 0 by choosing a very low s2. To model the extreme case,
let s2 = 0 so that γ2 = 0. Then f2 = 1 and the total latency
on the network as a function of γ1 > 0 is given by

L(γ1) = 1 +

(
γ1

1 + γ1

)2

+
γ1

1 + γ1
+

1− γ1
2(1 + γ1)

= 1.5 +

(
γ1

1 + γ1

)2

> 1.5.

Thus, charging tolls that induce γ1 > 0 cause the total
latency of a tolled Nash flow to be greater than that of the
un-tolled Nash flow. The only tolls that guarantee γ1 = 0
have tolling coefficients κ1 = κ2; any tolls of this form have
Lnf(G, s, τ) = Lnf(G, ∅).

B. Weakly Robust Tolls for Parallel-Path Networks

We now ask if knowledge of a small amount of informa-
tion can mitigate the negative result of the previous section.
Indeed, if networks are known to be single-commodity
parallel-path networks, Theorem 3.3 shows that weakly-
robust network-agnostic taxation mechanisms always exist.
This is true even in extreme cases when SL = 0 or SU =∞.



The implications for a toll-designer are encouraging: this
result demonstrates the intuitive principle that information
regarding the possible class of networks can greatly expand
the designer’s toolbox.

Before stating the theorem, we point out that worst-case
performance guarantees provided by a taxation mechanism
can often be improved by increasing all edge tolls ap-
propriately (as discussed in [20]). Thus, in order to make
meaningful statements about congestion-minimizing tolls, it
is useful to parameterize tolls by a stylized upper-bound; the
parameter κmax > 0 plays this role in the following theorem.

Theorem 3.3: For single-commodity parallel-path net-
works with affine latency functions, a network-agnostic taxa-
tion mechanism is weakly robust if and only if it satisfies the
conditions of Lemma 3.2. Furthermore, for any SU <∞ and
toll-scalar upper-bound κmax ≥ 0 the congestion-minimizing
taxation mechanism assigns tolling functions

τe(fe) = κmaxaefe + bemax

{
0,
κmaxSU − 1

2SU

}
. (17)

If SU = +∞, then for any SL ≥ 0, (17) simplifies to

τe(fe) = κmax (aefe + be/2) . (18)

The proof of Theorem 3.3 appears in the Appendix.
Here, we find that the universal tolls of [20] are in fact

weakly robust for parallel-path networks. Another important
fact to note is that (17) gives some insight into the robust-
ness of scaled marginal-cost tolls: Recall that for affine-
latency congestion games, marginal-cost tolls are given
by τmc

e (fe) = aefe, and incentivize optimal Nash flows
for unit-sensitivity homogeneous populations. If κmax =
1/SU, (17) gives the congestion-minimizing scaled marginal-
cost toll as τe(fe) = aefe/SU. This can be interpreted as
a conservatively-scaled marginal-cost toll; it implies that the
best way to avoid perverse incentives with marginal-cost tolls
is to charge tolls as though all users have sensitivity equal
to SU.

IV. CONCLUSION

In this paper, we have presented initial findings on the
weak robustness of network-agnostic taxation mechanisms;
we showed that in general routing problems, network-
agnosticity carries the risk of perverse incentives if some
network users are unresponsive to tolls. On the other hand,
we showed that on parallel-path networks, perverse incen-
tives can be systematically avoided, and we characterized
the full space of weakly robust network-agnostic taxation
mechanisms for this setting. Throughout, we gauged ev-
erything from a draconian worst case perspective; relaxing
this approach slightly may yield significant robustness gains.
For example, if a tax-designer has coarse distributional
knowledge of a user population’s price sensitivities, it is
possible that this knowledge can be exploited to employ more
aggressive taxation schemes which remain weakly robust.
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APPENDIX: PROOFS

Proof of Lemma 3.2: Let τna be a network-agnostic
taxation mechanism; that is, for any affine latency function
`e(fe) = aefe + be, the taxation function on edge e is
given by τe(fe) = τna(aefe + be). Consider the network in
Figure 2(a); the un-tolled and optimal flow on this network is
always (r/2, r/2). Thus, weakly-robust tolls must charge the
same total amount on the upper path as they do on the lower
path, or τna(`3) = τna(`1) + τna(`2). By replacing `1, `2,
and `3 with various combinations of linear and constant
functions, it can be shown that this additivity implies that



Fig. 2. Networks used to prove necessary conditions for weak robustness
of network-agnostic taxation mechanisms.

τna is linear, or there exist scalars κ1 ∈ R+ and κ2 ∈ R+

such that
τna(af + b) = κ1af + κ2b. (19)

For user x, tolls of this form induce effective costs of

Jex(fe) = aefe + be + γxaefe, (20)

where for all x, γx ∈ R and γx , sx(κ1−κ2)
1+sxκ2

. In the
following, we assume that for all x, γx = γ.

If γ < 0 (i.e., κ1 < κ2), it is simple to show that this is a
perverse incentive on any network of the form in Figure 2(b)
whenever r is sufficiently high, since it incentivizes over-
congestion on link 1. Therefore, suppose that γ > 1. In
Figure 2(b) let a = b = 1. If r = 1/2, fnf = fopt =
(1/2, 0) with total latency L(fnf) = 1/4. However, for any
γ > 1, some positive mass of traffic routes on the lower edge,
increasing the total latency above 1/4. Thus, affine tolls can
only be weakly-robust if for all x, γx ∈ [0, 1], completing
the proof.

A. Proof of Theorem 3.3 and associated Lemmas

To facilitate our arguments, we assign labels of i ∈
{1, . . . , |P|} to a network’s paths such that if bi ,

∑
e∈pi be,

for all i we have bi < bi+1. Similarly, we write fi ,∑
e∈pi fe and ai ,

∑
e∈pi ae.

We complete the proof for the case that every bi is distinct
and at most one path has ai = 0. This is without loss of
generality since if paths i, j have bi = bj , they may be
combined into one path; if two paths have ai = aj = 0, the
path with the higher constant coefficient may be ignored.

Lemma 4.1: Any Nash flow fnf induced by tolls accord-
ing to Lemma 3.2 satisfies the following: if bi < bi+1, a user
x is using path i, and a user y is using path i+ 1,

1) sx ≤ sy ,
2) 2aifi + bi ≥ 2ai+1fi+1 + bi+1.

Proof: Because user cost functions are equivalent
to (20) and sx(κ1−κ2)

1+sxκ2
is monotone-increasing in sx, we can

assume without loss of generality that tolls are of the form
τe(fe) = aefe and that [SL, SU] ⊆ [0, 1].

Item 1 is proved in Claim 1.1.2 of [9], which also shows
that aifnfi ≤ ai+1f

nf
i+1. If agent y is using path i + 1 in a

Nash flow, this means that

(1 + sy)aif
nf
i + bi ≥ (1 + sy)ai+1f

nf
i+1 + bi+1. (21)

Since sy ≤ 1 and aifnfi ≤ ai+1f
nf
i+1, (21) implies item 2.

Proof of Theorem 3.3: It remains to show that reducing
a group of users’ sensitivities will cause a net transfer of
traffic from low marginal-cost paths to high marginal-cost
paths (that is, from higher-order paths to lower-order). Given
a Nash flow fnf on G of a population s, suppose a small
mass ε of users have their types changed to SL; this perturbs
the original Nash flow by some δ ∈ R|P|. For simplicity,
assume that all of these users were originally using path pi
in fnf . Lemma 4.1 implies that after the sensitivity change,
these users will prefer p1 to any other path, so the primary
effect of the sensitivity change is that these users will switch
from pi to p1.

This transfer of traffic from pi to p1 increases the cost of
p1 and may decrease the cost of pi; this could cause some
agents on p1 to switch to p2, and some agents on paths
pi+1 and/or pi−1 to switch to pi. Note that it is not possible
for the flow on p1 to decrease or the flow on pi to increase.
Denote by P1 the sequence of paths on which flow increases
due to the transfer from pi to p1: these paths have labels
{1, 2, . . . , j}. Likewise, denote by Pi the sequence of paths
on which flow decreases due to the shift: these paths are
{k, . . . , i, . . . , h}. Note that the path flow on any path of
lower order than j cannot decrease, and the flow on any
path of higher order than h cannot increase. That is, there is
a net change of some nonnegative mass η of traffic from Pi
to P1, and no other path flows change. We can thus lower-
bound the change in total latency by applying the ordering
over marginal-costs from Lemma 4.1:

L
(
fnf + δ

)
− L

(
fnf
)
=

n∑
i=1

aiδ
2
i + δi

(
2aif

nf
i + bi

)
≥

n∑
i=1

δi
(
2aif

nf
i + bi

)
≥ η

(
2ajf

nf
j + bj − 2akf

nf
k − bk

)
≥ 0. (22)

Thus, at any Nash flow, changing the sensitivity of a small
group of users to SL results in a new Nash flow which has
greater total latency than the original Nash flow. This implies
for any heterogeneous population and any network G ∈ Gp,
denoting the taxation mechanism of Lemma 3.2 by τwr and
denoting a homogeneous population with sensitivity SL by
sL, that

Lnf (G, s, τwr) ≤ Lnf
(
G, sL, τwr

)
. (23)

Since an un-influenced Nash flow can be represented as a
Nash flow for homogeneous population with 0 sensitivity,
we may simply apply (23) a second time to obtain

Lnf (G, s, τwr) ≤ Lnf (G, ∅) , (24)
or τwr is weakly robust on parallel networks.

Finally, since the worst-case Nash flows are caused by ex-
treme low-sensitivity homogeneous populations; congestion-
minimizing tolls should be designed to maximize SL(κ1−κ2)

1+κ2SL

subject to SU(κ1−κ2)
1+κ2SU

≤ 1. This is done by choosing κ1 as
large as possible and κ2 such that SU(κ1−κ2)

1+κ2SU
= 1. Given this

fact, it is easy to compute (17), and (18) follows by taking
the limit as SU → +∞.


