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Optimal Mechanisms for Robust Coordination in
Congestion Games
Philip N. Brown and Jason R. Marden

Abstract—Uninfluenced social systems often exhibit suboptimal
performance; specially-designed taxes can influence agent choices
and thereby bring aggregate social behavior closer to optimal.
A perfect system characterization may enable a planner to
apply simple taxes to incentivize desirable behavior, but sys-
tem uncertainties may necessitate highly-sophisticated taxation
methodologies. Using a model of network routing, we study the
effect of system uncertainty on a designer’s ability to influence
behavior with financial incentives. We show that in principle, it
is possible to design taxes that guarantee that selfish network
flows are arbitrarily close to optimal flows, despite the fact that
agents’ tax-sensitivities and network topology are unknown to the
designer. In general, these taxes may be large; accordingly, for
affine-cost parallel-network routing games, we explicitly derive
the optimal bounded tolls and the best-possible performance
guarantee as a function of a toll upper-bound. Finally, we restrict
attention to simple fixed tolls and show that they fail to provide
strong performance guarantees if the designer lacks accurate
information about network topology or user sensitivities.

I. INTRODUCTION

It is well-known that in systems that are driven by so-
cial behavior, lack of coordination and agents’ self-interested
behavior can significantly degrade system performance. This
poor performance is commonly referred to as the price of
anarchy, defined as the ratio between the worst-case social
welfare resulting from selfish behavior and the optimal social
welfare [2]. This degradation of performance due to selfish
behavior has been the subject of research in areas of network
resource allocation [3], distributed control [4], traffic conges-
tion [5], [6], and others. As a result, there is a growing body
of research geared at influencing social behavior to improve
system performance [7]–[13].

To study the issues surrounding the problem of influencing
selfish social behavior, we turn to a simple model of traffic
routing: a mass of traffic needs to be routed across a network
in a way that minimizes the average network transit time. If a
central planner can direct traffic explicitly, it is straightforward
to compute the routing profile that minimizes total congestion.
However, in real systems, it may not be possible to implement
such direct centralized control or prescribe such optimal
coordinated behavior: for example, if the network represents a
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city’s road network, individual drivers make their own routing
choices in response to their own personal objectives.

Accordingly, we may model this routing problem as a non-
atomic congestion game, where the traffic can be viewed
as a collection of infinitely-many users, each controlling an
infinitesimally-small amount of traffic and seeking to minimize
its own transit time. We use the popular concept of a Nash flow
(defined as a routing profile in which no user can switch to a
different path and decrease her transit delay) to characterize
the routing profile resulting from such self-interested behavior.
It is widely known that Nash flows can exhibit considerably
higher congestion than optimal flows. An important result in
this setting states that a Nash flow on a network with general
latency functions can be arbitrarily worse than an optimal
flow [14]. That is, the price of anarchy is unbounded; this
is true even on networks consisting of only two links. Recent
research has investigated the price of anarchy of transportation
networks under various conditions [15]–[18].

A separate research agenda has investigated methods of
incentivizing individual network users to choose more-efficient
routes, thereby aligning Nash flows with optimal flows. This
can be viewed as an attempt to incentivize coordination
between the users of the network. A natural approach to this is
to charge monetary taxes for the use of network links. Existing
research has explored methods of designing such optimal taxes
given that the tax-designer has access to certain information
regarding the system. In [19]–[21] it is shown that optimal
“fixed” taxes (i.e., taxes are constant functions of traffic flow)
can be computed for any routing game, but the computation
requires precise characterizations of the network topology,
user demands, and user tax-sensitivities. In contrast, [22],
[23] derive optimal taxes known as “marginal-cost taxes”
which require no knowledge of the network topology or user
demands, but require that all users share a common known tax-
sensitivity. Furthermore, the marginal-cost taxation functions
must be strictly flow-varying. Section III details these results.

In this paper, we ask if it is possible to compute optimal
taxes with minimal information about the system, and present
several new results showcasing the relationship between avail-
able tolling methodologies, uncertainty, and achievable perfor-
mance. We term this goal “robust coordination,” as we desire
to incentivize agents to behave as though they are coordinating
with one another, but we require that our behavior-influencing
mechanisms are robust to mischaracterizations of the system.
Since price of anarchy is simply a cost metric in worst-case
over some set of unknown information, it lends itself naturally
to quantifying the robustness of taxation mechanisms to un-
known information. Thus, our analysis represents a departure
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both from the typical descriptive price of anarchy research
as well as from the complete-information assumptions of the
taxation literature.

Our main contribution is to derive a universal taxation
mechanism that guarantees arbitrarily-good performance for
any routing game while requiring no prior knowledge of the
specific network, user demand profile, or distribution of user
sensitivities. That is, our derived taxes are robust to gross
mischaracterizations of the above quantities. This result holds
for networks with general latency functions and any topology,
suggesting that surprisingly-little information is required in
principle.

Our next result explores the effect of reducing the designer’s
capabilities while maintaining a high level of uncertainty. To
this end, our second contribution is to explore the effect of
placing an upper bound on the allowable tolling functions.
This may have practical value in settings where very large tolls
may be impossible (or politically unpalatable) to implement.
For parallel networks with linear-affine latency functions, we
derive the optimal tolling functions that minimize worst-
case performance degradation for any unknown distribution
of user sensitivities and toll upper bound, requiring no prior
knowledge of the number of network links. These optimal
tolls are simple affine functions of flow. We show that for
parallel networks with linear-affine cost functions and simple
user demands, the worst-case performance degradation strictly
decreases with the toll upper bound. Our results suggest
that large tolls can compensate for a poor characterization
of user sensitivities. Unfortunately, by imposing an upper
bound on allowable taxation functions, optimal behavior can
no longer be guaranteed. Thus, this result additionally implies
that unbounded tolls are necessary to enforce optimal flows if
both the network topology and user sensitivities are unknown.

Our results in Section VI explore a further restriction on
the designer’s capabilities, requiring that tolls do not depend
on flow (i.e., requiring fixed tolls rather than tolling func-
tions). These results suggest that fixed tolls lack robustness to
mischaracterizations of network topology and user sensitivity.
First, if the network topology is unknown, fixed tolls cannot
enforce perfectly optimal routing, and we present a simple
setting in which network performance can be arbitrarily bad if
fixed tolls are not allowed to depend on the network structure.
Finally, we show that even if fixed tolls are allowed to depend
on the network topology and user demands, they provide
relatively poor performance guarantees when the user sensitiv-
ities are unknown. Here, by reducing the designer’s capability
(by disallowing access to flow-varying taxation functions), we
dramatically reduce the achievable performance guarantees in
the presence of uncertainty. That is, fixed tolls are significantly
less robust than flow-varying tolls. Our negative result here
vividly demonstrates the need for a clear understanding of the
robustness of incentive mechanisms to model imperfections.

II. MODEL AND PERFORMANCE METRICS

A. Routing Game

Consider a network routing problem in which a unit mass
of traffic needs to be routed across a network (V,E), which

consists of a vertex set V and edge set E ⊆ (V ×V ). We call a
source/destination vertex pair (sc, tc) ∈ (V ×V ) a commodity,
and the set of all such commodities C. For each c ∈ C, there
is a mass of traffic rc > 0 that needs to be routed from sc to
tc. We write Pc ⊂ 2E to denote the set of paths available to
traffic in commodity c, where each path p ∈ Pc consists of a
set of edges connecting sc to tc. Let P = ∪{Pc}.

We write f cp ≥ 0 to denote the mass of traffic from
commodity c using path p, and fp ,

∑
c∈C f

c
p . A feasible flow

f ∈ R|P| is an assignment of traffic to various paths such that
for each c,

∑
p∈Pc f cp = rc. Without loss of generality, we

assume that
∑
c∈C r

c = 1.
Given a flow f , the flow on edge e is given by fe =∑
p:e∈p fp. To characterize transit delay as a function of traffic

flow, each edge e ∈ E is associated with a specific latency
function `e : [0, 1] → [0,∞). We adopt the standard assump-
tions that latency functions are nondecreasing, continuously
differentiable, and convex. Note that latency functions are
anonymous: all traffic affects delay equally. The cost of a flow
f is measured by the total latency, given by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(fp), (1)

where `p(f) =
∑
e∈p `e(fe) denotes the latency on path p.

We denote the flow that minimizes the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2)

A routing problem is given by the tuple G = (V,E, C, {`e}).
We write the set of all such routing problems as G, and often
write e ∈ G to denote (e ∈ G : G ∈ G).

In this paper we study taxation mechanisms for influencing
the emergent collective behavior resulting from self-interested
price-sensitive users. To that end, we model the above routing
problem as a non-atomic game in which the traffic models
a large population of users. Thus, we use the terms “traffic,”
“users,” and “agents” interchangeably. We assign each edge1

e ∈ E a flow-dependent, nondecreasing taxation function
τe : [0, 1] → R+. We characterize the taxation sensitivities
of the users in commodity c with a monotone, nondecreasing
function sc : [0, rc] → [SL, SU], where each user x ∈ [0, rc]
has a taxation sensitivity scx ∈ [SL, SU] ⊆ R+ and SU ≥ SL ≥
0 denote upper and lower sensitivity bounds, respectively.
Given a flow f , the cost that user x ∈ [0, rc] experiences
for using path p̃ ∈ Pc is of the form

Jcx(f) =
∑
e∈p̃

[`e(fe) + scxτe(fe)] . (3)

Thus, for each user x ∈ [0, rc], the sensitivity scx can be viewed
as a constant gain on the toll; a user’s experienced cost is then
the sum of the latency and sensitivity-weighted toll. Note that
sensitivity can be interpreted as the reciprocal of an agent’s
value-of-time.2 Note that scx need not equal scy for x 6= y. We

1Note that we allow all edges to be taxed (as in [19]–[23]); see [24] for a
relaxation of this requirement.

2We adopt this formulation from [19]. Note that constant sensitivity is a
commonly-studied special case; alternative formulations are possible [25].
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assume that each user prefers the lowest-cost path from the
available source-destination paths. We call a flow f a Nash
flow if for all commodities c ∈ C and all users x ∈ [0, rc] we
have

Jcx(f) = min
p∈Pc

{∑
e∈p

[`e(fe) + scxτe(fe)]

}
. (4)

It is well-known that a Nash flow exists for any non-atomic
game of the above form [26].

In our analysis, we assume that each sensitivity distribution
function sc is unknown; for a given routing problem G and
SU ≥ SL ≥ 0 we define the set of possible sensitivity
distributions as the set of monotone, nondecreasing functions
SG = {sc : [0, rc] → [SL, SU]}c∈C . We write s ∈ SG to
denote such a specific collection of sensitivity distributions,
which we term a population.

B. Price of Anarchy and Robustness

For a given routing problem G ∈ G, we gauge the efficacy of
a collection of taxation functions τ = {τe}e∈E by comparing
the total latency of the resulting Nash flow and the total latency
associated with the optimal flow, and then performing a worst-
case analysis over all possible user populations. Let L∗(G)
denote the total latency associated with the optimal flow, and
Lnf(G, s, τ) denote the total latency of the worst-performing
Nash flow resulting from taxation functions τ and population
s. The worst-case system cost associated with this specific
instance is captured by the price of anarchy which is of the
form

PoA(G, τ) = sup
s∈SG

{
Lnf (G, s, τ)

L∗(G)

}
≥ 1. (5)

In this context, we seek taxation mechanisms which mini-
mize PoA(G, τ) for a wide variety of routing games G. If a
taxation mechanism τ brings PoA(G, τ) close to 1 for many
games G (in a sense to be made exact later), this indicates
that τ is robust to to mischaracterizations of user sensitivities.
Traditionally, the price of anarchy is analyzed in worst case
over a given class of games [14]. In our usage, we delay taking
the worst case over all networks until specific settings when
it is called for. For example, Theorem 1 exhibits a taxation
mechanism which drives the price of anarchy to 1 for every
G, but the rate at which the price of anarchy approaches 1 may
vary from network to network. On the other hand, Theorem 3
provides an expression for the price of anarchy that holds for
all parallel networks.

III. RELATED WORK

The following is a brief overview of the existing literature
on taxation mechanisms in this context. A taxation mechanism
simply computes edge tolls as a function of some set of
information about the system; here, we focus in particular
on the informational dependencies of several well-studied
taxation approaches.
– Omniscient taxation mechanisms: These taxation mecha-
nisms are assumed to have access to complete information
regarding the routing game. For edge e ∈ G and population
s ∈ SG, the edge tolling function takes the following form:

τe (fe;G, s) . That is, each edge’s taxation function can depend
on the entire routing problem G and the population sensi-
tivities s. Recent results have identified taxation mechanisms
of this form that assign fixed tolls (i.e., for any e ∈ G,
τe(fe) = qe for some qe ≥ 0) that can enforce any feasible
flow [20], [21], thus guaranteeing a price of anarchy of 1.
However, the robustness of these mechanisms to variations or
mischaracterizations of network topology and user sensitivities
is heretofore unknown.
– Network-agnostic taxation mechanisms: This type of tax-
ation mechanism is agnostic to network specifications: each
taxation function is derived from locally-available information
only. Here, a system designer essentially commits to a taxation
function for each potential edge e ∈ G, and any network
realization G ∈ G merely employs a subset of these pre-
defined taxation functions. An edge’s toll cannot depend on
any other edge’s cost or location in the network, nor can it
depend on the tax-sensitivities of the agents.

A commonly-studied network-agnostic taxation mecha-
nisms is the marginal-cost (or Pigovian) taxation mechanism
τmc, which is of the following form: for any e ∈ G with
latency function `e, the accompanying taxation function is

τmc
e (fe) = fe ·

d

dfe
`e(fe), ∀fe ≥ 0. (6)

In [22] it is shown that for any G ∈ G we have L∗(G) =
Lnf (G, s, τmc) provided that all users have a sensitivity ex-
actly equal to 1. Hence, irrespective of the underlying network
structure, a marginal-cost taxation mechanism always ensures
the optimality of the resulting Nash flow, provided that all
users share a common known sensitivity.

There are many other results in this area; for example,
in [27] the authors investigate the price of anarchy of various
types of tolling functions with built-in upper bounds. In [28],
it is shown that if taxes can be computed in a centralized
fashion, any feasible flow can be enforced even if the central
planner does not know the network’s latency functions. For
affine-cost parallel networks, [29] derives omniscient, flow-
varying taxation mechanisms for applications where the total
traffic rate is unknown. Finally, in [7], the authors show that
marginal-cost taxes scaled by

√
SLSU do possess a degree

of robustness to mischaracterizations of user sensitivities for
affine-cost parallel networks.

IV. A UNIVERSAL TAXATION MECHANISM

In this paper, we prove that network- and sensitivity-
agnostic tolls exist which can drive the price of anarchy to
1 for general networks and latency functions. We term these
“universal” because they take the same form and provide the
same performance guarantee regardless of which particular
routing scenario they are applied to. Using this taxation mech-
anism, we show in Theorem 1 that for any network, regardless
of network topology, traffic rates {rc}, or price-sensitivity
functions {sc}, the price of anarchy can be made arbitrarily
close to 1 with sufficiently-large edge tolls, indicating that
tolls exist which are robust to mischaracterizations of all the
aforementioned system parameters.
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Theorem 1. Let G be the set of multi-commodity routing
games where SU ≥ SL > 0. For any network edge e ∈ G
with convex, nondecreasing, continuously differentiable la-
tency function `e, define the universal taxation function on
edge e with gain parameter κ ≥ 0 as

τue (fe;κ) = κ

(
`e(fe) + fe ·

d

dfe
`e(fe)

)
. (7)

Then for any routing problem G ∈ G,

lim
κ→∞

PoA (G, τu(κ)) = 1. (8)

That is, on any network being used by any population
of users, the total latency can be made arbitrarily close to
the optimal latency, and each individual link toll is a simple
continuous function of that link’s flow. The reason for this is
that as κ increases, the original latency function has a smaller
and smaller relative effect on the users’ cost functions; in the
large-toll limit, the only cost experienced by the users is the
tolling function itself which is specifically designed to induce
optimal Nash flows.

Proof. Using a sequence of tolls, we construct a sequence of
Nash flows that converges to an optimal flow. Let κn be an
unbounded, increasing sequence of tolling coefficients.

For any routing problem G ∈ G and price-sensitivities s ∈
SG, let fn =

(
fnp
)
p∈P denote the Nash flow resulting from

the tolling coefficient κn. For each commodity c, let Pcn ⊆ Pc
denote the set of paths that have positive flow in fn. For any
p ∈ Pcn, there must be some user x ∈ [0, rc] using p with
sensitivity scx; the cost experienced by this user is given by

Jcx(fn) =
∑
e∈p

[
`e(fe) + κns

c
x

(
`e(fe) + fe ·

d

dfe
`e(fe)

)]
.

Define γn,x , κns
c
x

1+κnscx
. Let `∗e(fe) = fe · d

dfe
`e(fe); then for

any other path p′ ∈ Pc \ p, user x must experience a lower
cost on p than on p′, or∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤ γn,x

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

. (9)

Therefore, for any n ≥ 1, fn must satisfy some set of
inequalities defined by (9). Note that for all c ∈ C and any
x ∈ [0, rc], limκn→∞ γn,x = 1, so because all the functions
in (9) are continuous, fn converges to a set F ∗ of feasible
flows that satisfy∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

 (10)

for all c, all p ∈ Pc∗, and p′ ∈ Pc, where Pc∗ ⊆ Pc is
some subset of paths. But inequalities (10) (combined with
the feasibility constraints on f ) also specify a Nash flow for
G for a unit-sensitivity population with marginal-cost taxes as
specified by (6). Any such Nash flow must be optimal [22];
that is, any f ∈ F ∗ is a minimum-latency flow for G. Thus,
since L(f) is a continuous function of f ,

lim
n→∞

L (fn) = L∗ (G) , (11)

obtaining the proof of the theorem.

Fig. 1. Base network for Examples 1 and 2. This network has three
commodities (i.e., source-destination pairs): (A,B) (red), (A,E) (green),
and (C,D) (blue), with associated traffic rates r1, r2, and r3, respectively.
Traffic in each commodity has access to all directed paths that connect the
respective source and destination; for example, (A,B) can choose between
{e1}, {e2, e3, e4}, and {e2, e7, e8}. For a demonstration of universal tolls
applied to a specific instance of this network, see Figure 2. To demonstrate the
effects of the universal tolls of Theorem 1, random variations of this network
are simulated and the resulting price-of-anarchy values are plotted in Figure 3.

A. Price of Anarchy Bounds for Homogeneous Populations

The result in Theorem 1 is encouraging since it ensures
that no routing game or user population is so pathological
that we cannot enforce optimal routing with sufficiently-
high tolls, but it gives no indication of how high these tolls
must be. In our next result in Proposition 2 (which follows
from a result in [30]), we state that for homogeneous price-
sensitive populations (i.e., all users have the same non-zero
price sensitivity), the performance degradation is uniformly
bounded in all games by a simple expression.

Proposition 2. If all users have (unknown) homogeneous
price-sensitivity s ≥ SL > 0, the price of anarchy induced
by τu(κ) is given by

sup
G∈G

PoA (G, τu(κ)) ≤ 1 + κSL

κSL
. (12)

Proof. Immediate from Proposition 6.4 of [30].

B. Examples Illustrating Universal Tolls

Example 1. Consider the network in Figure 1. This net-
work has been used to demonstrate dynamic tolling mecha-
nisms [13], and we use variations of it to illustrate the universal
tolls of Theorem 1. This network has three commodities,
labeled in Figure 1 as (A,B) (red), (A,E) (green), and (C,D)
(blue), with respective traffic rates r1, r2, and r3. Traffic in
each commodity has access to all paths connecting its source
to its destination; for example, the (A,B) commodity (shown
in red in Figure 1) has access to three paths: {e1}, {e2, e3, e4},
and {e2, e7, e8}.

First, consider an instance of this network in which r1 =
r2 = r3 = 0.5, all traffic in commodity 1 has sensitivity
s1 = 100, and all traffic in commodities 2 and 3 have
sensitivity s2 = s3 = 0.1. Let the latency functions be
given by `e(fe) = ae (fe)

4
+ be, with coefficients ae and

be given in Table I. Quartic latency functions of this form
are a stylized form of the well-known Bureau of Public
Roads (BPR) latency functions, commonly used to model
the congestion characteristics of physical roads [13], [31].
The optimal flow on this network (Figure 2(a)) has a total
latency of approximately 1.49; the un-influenced Nash flow
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TABLE I
LATENCY AND UNIVERSAL TOLLING FUNCTIONS FOR EXAMPLE 1

edge `e(fe) = ae(fe)4 + be τue (fe) = κ
(
5ae(fe)4 + be

)
e1 0.88(fe1 )4 + 0.10 κ

(
4.40(fe1 )4 + 0.10

)
e2 0.59(fe2 )4 + 0.91 κ

(
2.95(fe2 )4 + 0.91

)
e3 0.66(fe3 )4 + 0.87 κ

(
3.30(fe3 )4 + 0.87

)
e4 0.24(fe4 )4 + 0.88 κ

(
1.20(fe4 )4 + 0.88

)
e5 0.57(fe5 )4 + 0.93 κ

(
2.85(fe5 )4 + 0.93

)
e6 0.62(fe6 )4 + 0.12 κ

(
3.10(fe6 )4 + 0.12

)
e7 0.89(fe7 )4 + 0.34 κ

(
4.45(fe7 )4 + 0.34

)
e8 0.93(fe8 )4 + 0.93 κ

(
4.65(fe8 )4 + 0.93

)
e9 0.68(fe9 )4 + 0.22 κ

(
3.40(fe9 )4 + 0.22

)
e10 0.31(fe10 )4 + 0.72 κ

(
1.55(fe10 )4 + 0.72

)
e11 0.26(fe11 )4 + 0.40 κ

(
1.30(fe11 )4 + 0.40

)
e12 0.54(fe12 )4 + 0.45 κ

(
2.70(fe12 )4 + 0.45

)
e13 0.06(fe13 )4 + 0.08 κ

(
0.30(fe13 )4 + 0.08

)

(Figure 2(b)) has a total latency of approximately 1.955, for
an un-influenced price of anarchy of about 1.31. Applying
universal tolls (7) to this network (tolling functions in Table I)
results in an improvement in the total latency; Nash flows for
κ = 0.5 and κ = 10 are depicted in Figure 2(c) and (d),
respectively. Figure 2(e) plots the price of anarchy of this
specific instance as a function of κ. Values of κ as low as 0.1
reduce the price of anarchy from 1.31 to 1.19; when κ ≥ 5,
the price of anarchy is already below 1.05. For comparison,
the worst-case price of anarchy (over all networks) for quartic
latency functions is approximately 2.15 [14].

Example 2. The price of anarchy curve in Figure 2(e) is
specific to one particular routing problem and user population;
different networks and populations have different curves. To
study the effect of universal tolls on more than this single
instance, networks were generated by randomly deleting edges
from the network in Figure 1 (while requiring that each com-
modity has a feasible S-D path and that at least one commodity
has more than one such path). BPR latency functions were
chosen of the form `e(fe) = ae (fe)

4
+ be, where the ae and

be coefficients were chosen independently and uniformly at
random from the interval [0, 1]. Each network was simulated
with several homogeneous and heterogeneous user populations
and several different traffic rates, for a total of 2,314 individual
routing problems simulated. The ratio of Nash total latency to
optimal total latency (instance-specific price of anarchy) was
computed on each of these 2,314 routing problems in response
to universal tolls (7) for κ ∈ {0, 0.5, 1, 2, 5, 10}.

The results of the simulations are plotted in Figure 3. Each
dot corresponds to the price of anarchy of a routing problem
instance simulated for a given value of κ. Also included are
lines corresponding to the maximum, 99th, and 75th percentile
of simulated PoA values for each κ. Note in particular the
red dotted 75th-percentile line which indicates that when
κ = 0.5, 75% of the simulations reported a price of anarchy
below 1.01. This is not an exhaustive search over all price of
anarchy values for the considered networks; there may well be
specific choices of latency functions and populations which
result in higher congestion than plotted here. Nonetheless,

Fig. 2. Specific instance of network from Figure 1 for Example 1. Commodity
traffic rates are r1 = r2 = r3 = 0.5, and each commodity is assigned
homogeneous sensitivity values of s1 = 100 and s2 = s3 = 0.1. Latency
functions of `e(fe) = ae (fe)4 + be were assigned to the network, with
values as shown in Table I. The optimal flow on the network was computed,
as well as Nash flows resulting from universal tolls (7) for several values
of parameter κ. In (a)-(d), a colored edge indicates that traffic from the
commodity corresponding to that color is using that edge; a thin black edge
indicates no flow. Part (e) plots the simulated price of anarchy on this network,
for this population, as a function of tolling parameter κ.

these simulations illustrate the concept that in many cases,
relatively low values of κ may suffice to incentivize nearly-
optimal flows.

V. THEOREM 3: OPTIMAL BOUNDED TOLLS

Of course, it may be impractical or politically infeasible to
charge extremely high tolls. For example, if network demand
is elastic, very large tolls could induce some users to avoid
travel altogether. Therefore, in Theorem 3, we analyze the
effect of an upper bound on the allowable tolling functions.
For simplicity, we focus on parallel networks, which have
been used to model problems such as scheduling small jobs
on machines [32]. For parallel networks with affine cost
functions in which every edge has positive flow in an un-tolled
Nash flow, we explicitly derive the optimal bounded taxation
mechanism, and then provide an expression for the price of
anarchy. These optimal tolls are simple affine functions of
flow, and the price of anarchy is strictly decreasing in the upper
bound. Formally, we say a taxation mechanism is bounded if
all its taxation functions respect some upper bound:

Definition 1. Taxation mechanism τ is bounded by T on a
class of routing problems Ḡ if for every edge e ∈ Ḡ, τ assigns
a (possibly flow-varying) tolling function that satisfies

τe : [0, 1]→ [0, T ]. (13)

T
(
T, Ḡ

)
denotes the set of mechanisms bounded by T on Ḡ.

For the following results, let Gp ⊆ G represent the class
of all single-commodity, parallel-link routing problems with
affine latency functions. That is, for all e ∈ Gp, the latency
function satisfies

`e(fe) = aefe + be (14)

where ae ≥ 0 and be ≥ 0 are edge-specific constants. “Single-
commodity” implies that all traffic has access to all network
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Fig. 3. Monte Carlo results for Example 2. Each blue dot represents the
price of anarchy of one routing game in response to universal tolls (7) for
a specific value of κ. The solid blue, dashed green, and dotted red lines
represent respectively the maximum, 99th percentile, and 75th percentile of
Price of Anarchy values found for each corresponding value of κ. Note in
particular that the 75th percentile line is less than 1.01 for all κ ≥ 0.5,
suggesting that relatively low tolls may suffice for many networks.

edges. Furthermore, we assume that every edge has positive
flow in an un-tolled Nash flow.3 In order to meaningfully
discuss uniform toll bounds on a broad class of networks,
it is necessary to describe classes of networks with bounded
latency functions. To this end, we define G

(
ā, b̄
)
⊂ Gp as

the set of parallel, affine-cost networks such that for every
e ∈ G

(
ā, b̄
)
, the latency function coefficients satisfy ae ≤ ā

and be ≤ b̄. Note that ā and b̄ represent the maximum-possible
congestibility and free-flow time, respectively; estimates of
these quantities should be available because they are functions
of physical parameters such as distance and road width.

Definition 2. For every edge e ∈ G with latency function
`e a network-agnostic taxation mechanism is a mapping
τna : [0, 1]×{`e}e∈G → {τe} that assigns the following flow-
dependent taxation function to edge e:

τe(fe) = τna (fe; `e) (15)

where τna (f, `) satisfies the following additivity condition:4

for all e, e′ ∈ G and f ∈ [0, 1],

τna (f ; `e + `e′) = τna (f ; `e) + τna (f ; `e′) . (16)

Thus, both marginal-cost tolls (6) and universal tolls (7) are
network-agnostic according to Definition 2.

Our goal is to derive the bounded network-agnostic taxation
mechanism that minimizes the worst-case selfish routing on
Gp. We define the price of anarchy with respect to class of
problems G and bound T as the best price of anarchy we can
achieve on G with a taxation mechanism bounded by T :

PoAT (G) , inf
τ∈T(T,G)

{
sup
G∈G

PoA (G, τ)

}
. (17)

3This is essentially a regularity condition that prevents the creation of
unrealistic, highly-pathological networks. For example, if a network contains
an edge with a very high constant latency function, tolling functions could
cause highly-sensitive users to divert to this edge, causing gross network
“inefficiencies.” Note that we can always assign infinite tolls to such unused
edges to ensure that the regularity condition is met.

4The additivity condition in Definition 2 requires that two edges connected
in series will be assigned the same taxation function as if they were replaced
by a single edge whose latency function is the sum of the underlying latency
functions. It ensures that the incentive design process be independent of
network specifications, isolating the role of network information in the design
process.

Fig. 4. Price of Anarchy plot contrasting the Universal toll result from
Theorem 1 (dashed line) with the optimal toll result from Theorem 3 (solid
line) on the special case of the two-link network depicted on the left. For both
price of anarchy curves, the user sensitivities satisfy SL = 1 and SU = 10.
The price of anarchy of either taxation mechanism converges to 1 as the toll
upper bound increases, but the solid line converges much more quickly. This
is because Theorem 3 gives the optimal tolls for a specific class of networks
(parallel networks), but the universal tolls from Theorem 1 are designed to
work on all classes of networks.

Theorem 3. Let G(ā, b̄) ⊂ Gp be some subset of parallel,
affine-cost networks with finite ā and b̄. For any toll bound
T and SU ≥ SL > 0, define the set of universal parameters
by the tuple UT =

(
SL, SU, ā, b̄

)
. Then there exist functions

κ1 (UT ) and κ2 (UT ) such that the optimal network-agnostic
taxation mechanism bounded by T on G(ā, b̄) assigns tolling
functions

τe(fe) = κ1(UT )aefe + κ2(UT )be. (18)

Furthermore, the price of anarchy PoAT

(
G
(
ā, b̄
))

is given
by the following:

4
3

(
1− κ1(UT )SL

(1+κ1(UT )SL)
2

)
if κ1(UT ) < 1√

SLSU

4
3

(
1−

(1+κ1(UT )SL)
(

SL
SU

+κ1(UT )SL

)
(
1+2κ1(UT )SL+

SL
SU

)2

)
if κ1(UT ) ≥ 1√

SLSU
.

(19)

See Figure 4 for a comparison of the price of anarchy
afforded by Theorems 1 and 3. Note that the tolls of Theorem 3
incentivize considerably lower system costs than those of
Theorem 1; this is due to the fact that Theorem 3 is optimized
for a smaller class of networks.

For the reader’s convenience, we include a closed-form
expression for κ1(·) in the appendix as (43), and for κ2(·)
in the proof of Theorem 3 as (27). It is evident from
these expressions that κ1(·) and κ2(·) are both nondecreasing
and unbounded in T ; among other things, this implies that
limT→∞ PoAT

(
G
(
ā, b̄
))

= 1.
We now proceed with the proof of Theorem 3, which relies

on two supporting lemmas. For our first milestone, we restrict
attention to simple affine taxation functions:

Lemma 2.1. Let τA(κ1, κ2) denote an affine taxation mecha-
nism that assigns tolling functions τe(fe) = κ1aefe+κ2be. For
any κmax ≥ 0, the optimal coefficients κ∗1 and κ∗2 satisfying

(κ∗1, κ
∗
2) ∈ arg min

κ1,κ2≤κmax

{
sup
G∈Gp

PoA
(
G, τA(κ1, κ2)

)}
(20)

are given by

κ∗1 = κmax, (21)

κ∗2 = max

{
0,

κ2maxSLSU − 1

SL + SU + 2κmaxSLSU

}
. (22)
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Furthermore, for any G ∈ Gp, PoA
(
G, τA(κ∗1, κ

∗
2)
)

is upper-
bounded by the following expression:

4
3

(
1− κmaxSL

(1+κmaxSL)
2

)
if κmax <

1√
SLSU

4
3

(
1−

(1+κmaxSL)
(

SL
SU

+κmaxSL

)
(
1+2κmaxSL+

SL
SU

)2

)
if κmax ≥ 1√

SLSU
.

(23)

See the Appendix for the proof of Lemma 2.1.
Next, in Lemma 2.2, we investigate the possibility that

some other taxation mechanism could perform better than
the affine τA(κ∗1, κ

∗
2) while still respecting the bound T . To

that end, we assume that some arbitrary taxation mechanism
outperforms affine tolls, and deduce various properties of these
hypothetical tolls. We show that this hypothetical “better”
taxation mechanism must universally charge higher tolls than
our optimal affine tolls.

Lemma 2.2. Let τ∗ be any network-agnostic taxation mech-
anism such that for κmax ≥ 0

sup
G∈Gp

PoA (Gp, τ∗) < sup
G∈Gp

PoA
(
Gp, τA(κ∗1, κ

∗
2)
)
. (24)

Then τ∗ must charge strictly higher tolls than τA(κ∗1, κ
∗
2) on

every edge in every network:

∀ e ∈ Gp, ∀ fe ∈ (0, 1], τ∗e (fe) > τAe (fe). (25)

The proof of Lemma 2.2 appears in the Appendix.

Proof of Theorem 3. For any non-negative κ1 and κ2,
τA(κ1, κ2) is tightly bounded by

(
κ1ā+ κ2b̄

)
on G

(
ā, b̄
)
.

Note that for κ∗1 and κ∗2 as defined in Lemma 2.1,
(
κ∗1ā+ κ∗2b̄

)
is a strictly increasing, continuous function of κmax. Thus, for
any T ≥ 0, there is a unique κ∗max ≥ 0 for which τA(κ∗1, κ

∗
2)

is tightly bounded by T on G
(
ā, b̄
)
. We define the function

κ1(UT ) as the maximal κ∗max for any T ≥ 0, given SL, SU, ā,
and b̄. That is, κ1(UT ) is defined implicitly as the unique
function satisfying

κ1(UT )ā+max

{
0,

(
κ21(UT )SLSU − 1

)
b̄

SL + SU + 2κ1(UT )SLSU

}
= T. (26)

For completeness, in the appendix we include a closed-form
expression for κ1(UT ) as (43). We define κ2(UT ) as

κ2(UT ) = max

{
0,

κ21(UT )SLSU − 1

SL + SU + 2κ1(UT )SLSU

}
. (27)

Let e′ ∈ Ḡ be an edge with latency function `e′(fe′) =
āfe′ + b̄. By construction, the tolling function assigned by
τA(κ1(UT ), κ2(UT )) to e′ satisfies bound T with equality:
τAe′ (1) = T .

Now let τ∗ be any taxation mechanism with a strictly lower
price of anarchy than τA(κ1(UT ), κ2(UT )). By Lemma 2.2,
τ∗ assigns higher tolling functions than τA(κ1(UT ), κ2(UT ))
on every edge for every flow rate. In particular, on edge
e′, τ∗e′(1) > τAe′ (1) = T , violating bound T and proving
the optimality of τA (κ1(UT ), κ2(UT )) over the space of all
network-agnostic taxation mechanisms bounded by T . By
substituting κ1(UT ) for κmax in expression (23), we obtain
the complete price of anarchy expression (19).

It may be helpful to note that the crucial point in Theorem 3
is that the upper bound T allows us to compute a maximum
tolling coefficient κmax; it is this κmax that enters the price of
anarchy expression in (19). Thus, an alternative formulation
of boundedness is possible which simply specifies a κmax

and dispenses with specifying T , ā, and b̄. This formulation
represents a relative boundedness in which tolls cannot be too
much larger than realized latency function parameters.

VI. NEGATIVE RESULTS FOR FIXED TOLLS

Theorem 3 showed that simple affine tolling functions are
sufficient to achieve the best-possible price of anarchy for
network-agnostic bounded taxation mechanisms. It is natural
to ask what guarantees are possible for an even simpler class of
taxation functions, the constant functions. There are practical
benefits to such fixed tolls, foremost among which is the
simplicity and predictability they offer to network users.

It has long been known that flow-varying tolls are sufficient
to optimize network routing in cases when the network topol-
ogy is unknown [22]. We ask here if fixed tolls can provide
the same guarantee; i.e., we ask if (strictly) flow-varying
tolls are also necessary to optimize routing in these settings.
In Theorem 4, we prove this necessity, which immediately
implies that the price of anarchy of network-agnostic fixed
tolls is bounded away from 1.

Theorem 4. If for every G ∈ G and unit-sensitivity homoge-
neous population s, network-agnostic taxation mechanism τ
satisfies

Lnf(G, s, τ) = L∗(G), (28)

then it must be the case that τ assigns strictly flow-varying
taxation functions to some network edges.

Proof. We prove Theorem 4 by contradiction. Let τna

be a network-agnostic fixed tolling mechanism for which
Lnf(G, s, τna) = L∗(G); that is, it is a mapping from latency
functions to non-negative constant taxation functions that
enforces optimal routing on every network. Consider the two-
path network shown in Figure 5(a); denote this network Gn.
The upper path is composed of n copies of the same link in
series; network-agnosticity requires that τna charges the same
toll to every copy of that link. For a total traffic mass of r,
the optimal routing profile for this network is f∗1 = b/2 and
f∗2 = r− b/2. For a unit-sensitivity homogeneous population,
optimal fixed tolls τ1 and τ2 must satisfy

τ2 = nτ1 − b/2. (29)

Since these tolls are network-agnostic, τ1 cannot be a
function of b, so there exists some universal constant β > 0 for
which τ1 = β and τ2 = nβ−b/2. It is straightforward to show
that for any n and any choice of β, these tolls induce optimal
routing on the network for a unit-sensitivity homogeneous user
population. That is, Lnf(Gn, s, τ

na) = L∗(Gn)
Our hope is that these tolling functions would optimize

routing when applied to any network; i.e., that we could apply
τ1 = β to any edge with latency function `e(fe) = fe,
and τ2 to any edge with latency function b and still get
optimal performance. To test this, we apply the same tolls
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Fig. 5. Networks for Theorem 4 Proof. In both networks, `1(f1) = f1
and `2(f2) = b, with b > 0. (a): Network with n copies of the same link
in series on the upper path. Since every upper edge has the same latency
function, network-agnostic tolls must charge the same amount to each edge.
(b): The same network with n = 1; if network-agnostic tolls τ1 and τ2 were
designed for network (a), they can cause highly inefficient performance on
network (b).

to the network in Figure 5(b), which we denote G1. Here,
we find that τ2 = nβ − b/2 is now much too high; if the
total traffic rate is high enough, these tolls induce a flow with
f1 = β(n − 1) + b/2 and f2 = 0, even though the optimal
flow has f1 = b/2. This allows us to compute a lower bound
on the price of anarchy for these tolling functions:

Lnf(G1, s, τ
na)

L∗(G1)
≥
(
β(n− 1) + b

2

)2
b
(
β(n− 1) + b

4

) , (30)

which is unbounded in both n and β, generating a contraction
to our hypothesis that for all G, Lnf(G, s, τna) = L∗(G).

In light of this negative result, in Theorem 5, we ask what
guarantees are possible with fixed tolls if we know the network
structure but do not know the user sensitivities; refer to the
last row of Table II for a quick summary of the setting we
investigate here. Since we are allowing these fixed tolls to
depend on network structure (e.g., the number of edges in
the network), we denote such taxation functions by τ ft(G) =
{τ fte (G)}e∈G. The following theorem demonstrates that any
network-dependent fixed-toll taxation mechanism generally
provides poor performance guarantees when compared with
the optimal bounded taxation mechanism from Theorem 3.

Theorem 5. Consider any network-dependent fixed-toll taxa-
tion mechanism τ ft. For any network G ∈ Gp,

sup
s∈S
Lnf

(
G, s, τ ft(G)

)
≥ sup

s∈S
Lnf

(
G, s, τA(1/SU, 0)

)
, (31)

with affine tolls τA(·) as defined in Lemma 2.1. Thus,

sup
G∈G

PoA
(
G, τ ft

)
≥ sup
G∈Gp

PoA
(
G, τA(1/SU, 0)

)
=

4

3

(
1− SL/SU

(1 + SL/SU)
2

)
. (32)

We point out that the right-hand side of (32) represents
the price of anarchy due to network-agnostic affine tolls for
a very low toll upper bound. For example, in the canonical
Pigou network depicted in Figure 4, if SU = 10, affine tolls
prescribed by τA(1/SU, 0) imply a toll upper-bound of just
0.1. As shown in Figure 4, the price of anarchy for optimal
affine tolls is steeply decreasing in the toll upper-bound, so a
designer wishing to exploit the simplicity of fixed tolls may
need to accept lower performance guarantees as a result.

Furthermore, it is important to note that Theorem 5 shows
that τA, a network-agnostic tolling mechanism, provides better
performance guarantees (even for moderately low tolls) than

Fig. 6. Comparison of Price of Anarchy guaranteed by Theorems 3 and 5. All
plots are for SL = 1 and ā = b̄ = 1. The horizontal axis represents the level
of certainty in price-sensitivity; note that most taxation mechanisms guarantee
a price of anarchy of 1 for complete certainty unless they are restricted by a
very low upper-bound. The solid line represents the price of anarchy resulting
from fixed tolls (according to (32)), and the marked lines represent the price
of anarchy resulting from optimal flow-varying affine tolls for a given toll
bound (according to (19)). Note that for a very low toll bound, fixed tolls
slightly outperform affine tolls for well-characterized populations; this is due
to the fact that the fixed tolls are not restricted by the toll upper bound.

τ ft, a network-dependent tolling mechanism. This shows the
power of Theorem 3’s taxation mechanism: given less informa-
tion, it performs better than any fixed-toll taxation mechanism.

See Figure 6 for a comparison of the price of anarchy
afforded by Theorems 3 and 5, and note that fixed tolls only
outperform flow-varying affine tolls when both uncertainty and
the toll upper bound are low. In all other situations, optimal
affine tolls provide better performance guarantees.

The proof of Theorem 5 first considers homogeneous sen-
sitivity distributions and then extends to heterogeneous. We
write f ft(G, s, τ) and Lnf (G, s, τ) to denote a Nash flow and
its associated total latency induced by fixed tolls τ ∈ Rn
on network G, with homogeneous sensitivity s ∈ [SL, SU].
Similarly, we write the total latency of a Nash flow resulting
from affine tolls τA(κ1, κ2) as Lnf

(
G, s, τA(κ1, κ2)

)
.

Define the optimal fixed tolls τ∗ as

τ∗ ∈ arg min
τ∈Rn

max
s∈[SL,SU]

Lnf(G, s, τ). (33)

That is, τ∗ is in the set of edge tolls that minimize the total
latency for the worst possible user sensitivity.

In Lemma 5.1, we see that there is a curious relationship
between the total latencies of Nash flows resulting from fixed
tolls and those resulting from affine tolls τA(1/SU, 0). That
is, the optimal fixed tolls guarantee the same worst-case
performance as affine tolls with extremely low coefficients.

Lemma 5.1. For any G ∈ Gp, for a homogeneous population,
the worst-case total latency resulting from the optimal fixed
tolls τ∗ is equal to the worst-case total latency resulting
from τA(1/SL, 0):

max
s∈[SL,SU]

Lnf (G, s, τ∗) = max
s∈[SL,SU]

Lnf
(
G, s, τA(1/SU, 0)

)
.

(34)
The proof of Lemma 5.1 appears in the appendix.
Proof of Theorem 5. Since the set of homogeneous popula-
tions is a strict subset of the set of heterogeneous ones, we
can only make things worse by extending from homogeneous
to heterogeneous populations, so the bound in (32) must hold.
The expression in (32) is obtained by substituting 1/SU in for
κmax in the first part of expression (23).
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TABLE II

Toll Type Information Available Tolling Functions Required
Topology Demands Sensitivities Flow-Varying Unbounded Performance Guarantee

Fixed [20], [21] X X X 100%
Marginal-Cost [22], [23] X X† 100%
Theorem 1: Universal X X‡ 100%

Characterization Results for various tolling-function constraints
Theorem 3: Bounded Affine X Good, increasing in toll upper bound

g

The relationship between allowable tolls, informational dependencies and performance guarantees for several taxation methodologies. Simple
fixed tolls require a precise system characterization to guarantee optimality. Flow-varying marginal-cost tolls guarantee optimality, requiring only
knowledge of the (homogeneous) user-sensitivities. Theorem 1’s universal tolls require none of this information, but may be arbitrarily large.
Theorem 3 disallows unbounded tolls and derives the optimal information-independent bounded tolls for a sub-class of networks. Theorem 5
disallows even flow-varying tolls and shows that sensitivity-agnostic fixed tolls perform relatively poorly even if they are network-aware.
† The necessity of strictly flow-varying tolls in this setting is shown in Theorem 4.
‡ The necessity of unbounded tolls in this setting is an immediate corollary of Theorem 3.

VII. CONCLUSION

In this paper we have explored several avenues for influenc-
ing social behavior when aspects of the underlying system are
uncertain. Table II shows our results in context with previous
results on this topic, illustrating the informational requirements
and sophistication required of each taxation mechanism.

Avenues for future work include incorporating our results
into recent studies on the price of anarchy for unknown or
varying traffic rates [15], [16]. How would knowledge of
traffic rate factor into our taxation designs? Furthermore, in
practical problems, it may be that not every edge is available
for taxation; this prompts the question of which edges are best-
suited for taxes if other parameters are uncertain.
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in non-atomic network routing games,” in Algorithmic Game Theory,
vol. 6982 LNCS, pp. 302–313, 2011.

[28] U. Bhaskar, K. Ligett, L. Schulman, and C. Swamy, “Achieving Target
Equilibria in Network Routing Games without Knowing the Latency
Functions,” in Proc. IEEE Symp. Foundations of Computer Science,
(Philadelphia, PA, USA), pp. 31–40, 2014.

[29] G. Christodoulou, K. Mehlhorn, and E. Pyrga, “Improving the price of
Anarchy for Selfish Routing via coordination mechanisms,” Algorith-
mica, vol. 69, no. 3, pp. 619–640, 2014.

[30] P.-a. Chen, B. De Keijzer, D. Kempe, and G. Shaefer, “Altruism and
Its Impact on the Price of Anarchy,” ACM Trans. Economics and
Computation, vol. 2, no. 4, 2014.

[31] R. Singh and R. Dowling, “Improved Speed-Flow Relationships: Appli-
cation To Transportation Planning Models,” Seventh TRB Conference on
the Application of Transportation Planning Methods, no. 4, pp. 340–349,
2002.

[32] T. Roughgarden, “Stackelberg Scheduling Strategies,” SIAM Journal on
Computing, vol. 33, no. 2, pp. 332–350, 2004.

APPENDIX: PROOFS OF SUPPORTING LEMMAS

To prove Lemma 2.1, we analytically relate the Nash flows
induced by affine tolls with coefficients κ1 and κ2 to the
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Nash flows induced by marginal-cost tolls scaled by κ1 for
some other sensitivity distribution s′. We can then use known
analytical techniques for scaled marginal-cost tolls to derive
the optimal κ1 and κ2. We make use of the following theorem:

Theorem 6 (Brown and Marden, [7]). For any routing prob-
lem G ∈ Gp satisfying the assumptions of Theorem 3, the
scaled marginal-cost taxation mechanism τ smc(κ) assigns the
following tolls to any edge e ∈ Gp for κ ≥ 0:

τ smc
e (fe) = κaefe. (35)

The unique cost-minimizing marginal-cost toll scalar is

κ∗ =
1√
SLSU

= arg min
κ≥0

{PoA(G, τ smc(κ))} . (36)

Finally, for any G ∈ Gp, for q = SL/SU , the price of anar-
chy resulting from the optimal scaled marginal-cost taxation
mechanism is

PoA (G, τ smc(κ∗)) ≤ 4

3

(
1−

√
q(

1 +
√
q
)2
)
. (37)

Proof of Lemma 2.1

Let G ∈ Gp and κ1 ≥ κ2 ≥ 0.5 For user x ∈ [0, 1] with
sensitivity sx ∈ [SL, SU], the cost of edge e ∈ G given flow
f under affine tolls is given by

Jex(f) = (1 + κ1sx)aefe + (1 + κ2sx)be.

Note that we may scale Jex(f) by any edge-independent factor
without changing the underlying preferences of agent x. Thus,
without loss of generality, we may write

Jex(f) =
1 + κ1sx
1 + κ2sx

aefe + be. (38)

Now, define sensitivity distribution s′ by the following: for
any x ∈ [0, 1], s′x satisfies

s′x =
sx(κ1 − κ2)

κ1(1 + κ2sx)
. (39)

By a series of algebraic manipulations, we may combine (38)
and (39) to obtain

Jex(f) = (1 + κ1s
′
x) aefe + be, (40)

which is simply the cost resulting from scaled marginal-cost
tolls (35). Thus, for any sensitivity distribution s, we may
model a Nash flow resulting from affine tolls with coefficients
κ1 and κ2 as a Nash flow for sensitivity distribution s′

resulting from scaled marginal-cost tolls with κ = κ1.
Thus, by Theorem 6, assuming first that κmax is sufficiently

high, our optimal choice of κ1 is that which satisfies

κ1 =
1√
S′LS

′
U

, (41)

where S′L and S′U are computed according to (39).
Combining (39) and (41) yields the following character-

ization of the optimal κ2 with respect to κ1, for κmax ≥
(SLSU)

−1/2:

5Here, the requirement that κ1 ≥ κ2 is without loss of generality; later
analysis shows that κ2 > κ1 would always result in a Nash flow with higher
congestion than the un-tolled case.

κ2 =
κ21SLSU − 1

SL + SU + 2κ1SLSU
. (42)

Evaluating (37) at q = S′L/S
′
U verifies the second part

of (23) as the correct expression for PoA
(
G, τA(κ∗1, κ

∗
2)
)

when κmax is large.
Consider the case when κmax < (SLSU)

−1/2. Now, (42)
would prescribe a negative value for κ2, so the optimal choice
is to let κ2 saturate at 0. Now, we are precisely applying
scaled marginal-cost tolls with κ = κ1, so we apply the fact
shown in Lemma 1.2 of [7] that on this class of networks, if
κ ≤ (SLSU)

−1/2, the worst-case total latency of a Nash flow
always occurs for the extreme low-sensitivity homogeneous
sensitivity distribution given by sx ≡ SL for all x ∈ [0, 1].

Equation (35) in [7] gives the total latency of a Nash flow
for a homogeneous population with sensitivity SL as

Lnf(G,SL, κ) = LR −
κSL

(1 + κSL)
2 Θ, (44)

where LR and Θ are positive constants depending only on
G, satisfying Θ ≤ LR. It is easy to verify that the above
expression is minimized on a subset of

[
0, (SLSU)

−1/2
]

by
maximizing κ, and using the fact that Θ ≤ LR, we may verify
that the price of anarchy for κmax < (SLSU)

−1/2 is given by
the first part of (23), completing the proof of Lemma 2.1.

Proof of Lemma 2.2

Here, we derive properties of any taxation mechanism that
outperforms τA(κ∗1, κ

∗
2). We define the set of routing problems

G0 as follows: G ∈ G0 is a parallel network consisting of two
edges, with `1(f1) = cf1 and `2(f2) = c.

Let G ∈ G0. For any c, the optimal flow on G is (f∗1 , f
∗
2 ) =

(1/2, 1/2) and the optimal total latency is L∗(G) = 3c/4, but
the un-tolled Nash flow has a total latency of Lnf(G, s, ∅) = c,
so the un-tolled price of anarchy is 4/3. It is straightforward
to show furthermore that if SU > SL ≥ 0, for any κmax > 0,
this network constitutes a worst-case example and the price
of anarchy bound of this particular network is tight; i.e., it
equals the expression given in (23): PoA

(
G, τA(κ∗1, κ

∗
2)
)

=
supG∈Gp PoA

(
G, τA(κ∗1, κ

∗
2)
)
. Thus, if our hypothetical τ∗

outperforms τA in general, it must specifically outperform τA

on any network G ∈ G0, or

PoA (G, τ∗) < PoA
(
G, τA(κ∗1, κ

∗
2)
)
. (45)

Now, we investigate the performance of the hypothetical
tolling mechanism τ∗ on networks in G0. Given a network
G ∈ G0, τ∗ assigns edge tolling functions τ∗1 (f1) and τ∗2 (f2).
Recall that since τ∗ is network-agnostic, there is some function
τ∗ (f ; a, b) such that an edge e ∈ E with latency function
`e(fe) = aefe + be is assigned tolling function τ∗(fe; ae, be).
By analyzing networks in G0, we can deduce properties of
the function with the 2nd and 3rd arguments set to 0, since
τ∗1 (f1) = τ∗(f1; c, 0) and τ∗2 (f2) = τ∗(f2; 0, c).

Now we show that τ∗ must assign higher tolls than
τA(κ∗1, κ

∗
2). Let SU > SL. By design, the worst-case Nash

flows resulting from τA(κ∗1, κ
∗
2) occur for homogeneous pop-

ulations with s = SL and s = SU. Since any network G ∈ G0
has only 2 links, we can characterize a Nash flow simply by
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κ1(U) = min

Tā , 2TSLSU − (SL + SU)ā+
√

((SL + SU) ā+ 2TSLSU)
2

+ 4b̄SLSU

(
2ā+ b̄+ T (SL + SU)

)
2SLSU

(
2ā+ b̄

)
 (43)

Fig. 7. Closed-form expression for κ1(U) used in Theorem 3. Note that it is a continuous, unbounded, strictly increasing function of T .

the flow on edge 1; accordingly, let fL(c) denote the flow as
a function of c on edge 1 in the Nash flow resulting from
sensitivity distribution s = SL, and fH(c) the corresponding
edge 1 flow for s = SU. These flows are the solutions to the
following equations:

cfL(c) (1 + κ∗1SL) = c (1 + κ∗2SL) , (46)
cfH(c) (1 + κ∗1SU) = c (1 + κ∗2SU) . (47)

Summing (46) and (47) yields

κ∗1 (fL(c)− fH(c)) =
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU
. (48)

It is always true that fH(c) < fL(c). By design, L(fL(c)) =
L(fH(c)). Note that L is simply a concave-up parabola in the
flow on edge 1.

Now, let f∗L(c) and f∗H(c) be defined as the Nash flows
resulting from τ∗ for a given value of c; i.e., the solutions to

cf∗L(c) + τ∗1 (f∗L(c))SL = c+ τ∗2 (1− f∗L(c))SL, (49)
cf∗H(c) + τ∗1 (f∗H(c))SU = c+ τ∗2 (1− f∗H(c))SU. (50)

Since τ∗ guarantees better performance than τA(κ∗1, κ
∗
2), it

must do so in particular for these homogeneous sensitivity
distributions s = SL and s = SU. Since L is a parabola, this
means that for any c, fH(c) < f∗H(c) < f∗L(c) < fL(c).

Define the nondecreasing function ∆∗(f) = τ∗2 (f)−τ∗1 (1−
f) (which is implicitly also a function of c), so equations (49)
and (50) can be combined and rearranged to show

∆∗(f∗L(c))−∆∗(f∗H(c)) > c

[
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU

]
= κ∗1c (fL(c)− fH(c)) (51)

The above inequality can be further loosened by replacing
f∗L(c) with fL(c) and f∗H(c) with fH(c), and substituting
from (48) and rearranging, we finally obtain

∆∗(fL(c))−∆∗(fH(c))

fL(c)− fH(c)
> κ∗1c. (52)

Since this must be true for any c > 0, the average slope of
∆∗(f) must be greater than κ∗1c for all f > 0. Since τ∗2 (f) ≥ 0
this implies that τ∗1 (f) > κ∗1cf for all f > 0, or that

τ∗(f ; a, 0) > τA(f ; a, 0) (53)

for all positive f and a.
Now consider the following rearrangement of (50):

τ∗2 (1− f∗H(c)) = [cf∗H(c) + τ∗1 (f∗H(c))− cSU] · 1

SU

> c [(1 + κ∗1SU) fH(c)− 1] · 1

SU

= κ∗2cSU = τA2 (f). (54)

This implies that τ∗2 (f) > κ∗2c for all f > 0, or that

τ∗(f ; 0, b) > τA(f ; 0, b) (55)

for all positive f and b.
Finally, note that the additivity assumption of Definition 2

implies that τ∗(f ; a, b) is additive in its second and third
arguments. That is, we may add inequalities (53) and (55)
to conclude that for all nonnegative f , a, and b, it is true that

τ∗(f ; a, b) > κ∗1af + κ∗2b, (56)

or that a necessary condition for supG∈Gp PoA(G, τ∗) <
supG∈Gp PoA(G, τA) is that τ∗ must charge higher tolls on
every edge in every network.

Proof of Lemma 5.1

We first derive a simple expression for a Nash flow for a
homogeneous population as a linear function of the tolls τ .
Note that in the context of fixed tolls, Nash flows are unique
in cost: for a given routing game, every Nash flow exhibits
the same cost on all edges [19].

Claim 5.1.1. A Nash flow on G ∈ G for sensitivity s ∈ S1
and fixed tolls τ ∈ Rn that has positive traffic on all links can
be described by the following linear function:

f ft(G, s, τ) = R+H(b+ sτ), (57)

where R ∈ Rn and H ∈ Rn×n are constant matrices
depending only on G. The total latency of this flow is given
by the following convex quadratic in τ :

Lft(G, s, τ) = LR + sτTHT (2AH + I)b+ s2τTHTAHτ.
(58)

Proof. Since all users share the same sensitivity, all links have
equal cost to all agents in a Nash flow, so when all network
edges have positive flow, for any ei, ej ∈ E,

aifi + bi + sτi = ajfj + bj + sτj .

Similar to the approach in the proof of Lemma 1.2 in [7], a
Nash flow f ft(G, s, τ) is a solution f to the linear system
a1 −a2 · · · 0
0 a2 · · · 0
... 0

. . .
...

1 1 · · · 1


︸ ︷︷ ︸

P

f =


0
...
0
1


︸︷︷︸
r

+


−1 1 · · · 0
0 −1 · · · 0
... 0

. . .
...

0 0 · · · 0


︸ ︷︷ ︸

X

(b+ sτ).

(59)
P is invertible, so letting H = P−1X and R = P−1r, a Nash
flow is given by the linear equation (57).

The following observations will be helpful to our proof:
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Observation 5.1. The matrices H and R possess the following
properties for any G ∈ G:

1THb = 0T, (60)

1TR = 1, (61)
AR ∈ sp {1} , (62)

bTHTAHb = −MT b. (63)

Finally, every column of (AH + I) is in sp{1}.

These facts follow algebraically from the fact that by defi-
nition, f ft(G, s, τ) satisfies (59). Subsutiting (57) into (1) and
simplifying using the facts in Observation 5.1 yields (58).

Next, we establish a necessary condition for a set of fixed
tolls to be optimal in the sense of (33).

Claim 5.1.2. Fixed tolls τ∗ satisfying (33) must also satisfy

H

(
τ∗ +

b

SL + SU

)
= 0. (64)

Proof. By (58) the total latency due to fixed tolls is a concave
parabola in s, so for any τ , the maximum total latency on
[SL, SU] occurs at either SL or SU. Since Lft(G, s, τ) is
continuous and convex in τ , this means that τ∗ must satisfy

Lft(G,SL, τ
∗) = Lft(G,SU, τ

∗). (65)

Thus, for any optimal fixed tolls τ∗, Lft(G, s, τ∗) is a parabola
centered at s = SL+SU

2 :

argmin
s∈[SL,SU]

Lft(G, s, τ∗) = (SL + SU)/2. (66)

Our goal is to find the parabola with minimum as in (66)
which minimizes the values in (65).

Equation (58) implies that for all τ, τ ′ ∈ Rn, Lft(G, 0, τ) =
Lft(G, 0, τ ′); that is, the s = 0 endpoint of the parabola
has the same value for all tolls. Thus, for τ satisfy-
ing (66), Lft(G,SL, τ

∗) < Lft(G,SL, τ) if and only if
Lft
(
G, SL+SU

2 , τ∗
)
< Lft

(
G, SL+SU

2 , τ
)
.

By concavity, any tolls which result in globally optimal
routing for s = SL+SU

2 will also be optimal in the sense
of (33). It is easily verified that for a known homogeneous
sensitivity s, any tolls τ which satisfy

H (τ + b/(2s)) = 0 (67)

result in globally optimal routing. The proof of this is obtained
by substituting (67) into the gradient (with respect to τ ) of
Lft(G, s, τ) and applying the facts from Observation 5.1.

Therefore, any τ which satisfies (67) with s = SL+SU

2 will
be uncertainty-optimal. That is, τ∗ satisfies (64).

Evaluating (57) with tolls satisfying (64) yields an expres-
sion for a Nash flow induced by τ∗ as a function of s:

f ft(G, s, τ∗) = R+Hb (SL + SU − s) / (SL + SU) , (68)

implying that (R+Hb) specifies an un-tolled Nash flow. For
parallel networks, it is easy to show that every element of R
is non-negative; thus, since α ,

(
SL+SU−s
SL+SU

)
∈ [0, 1], it must

be that (R+Hbα) represents a feasible flow.

There are two possible worst-case flows using fixed toll τ∗:
one when the sensitivity is SU, the other when the sensitivity
is SL. In terms of (68), we write these flows as:

f ft− = f ft(G,SL, τ
∗) = R+Hb (SU/(SL + SU)) . (69)

f ft+ = f ft(G,SU, τ
∗) = R+Hb (SL/(SL + SU)) . (70)

Next we show that f ft− and f ft+ , the worst-case flows for
optimal fixed tolls, are actually exactly equal to worst-case
flows achievable with scaled marginal-cost tolls (35) with
a particular scalar. The machinery of Claim 5.1.1 describes
the Nash flows f smc(G, s, κ) resulting from homogeneous
sensitivity s and marginal-cost tolls scaled by κ > 0:

f smc(G, s, κ) = R+Hb/ (1 + sκ) . (71)

The derivation of this is straightforward; it is detailed in [7].
The worst worst-case flows occur when the sensitivity of

the population has been grossly over- or under-estimated; for
example, if a population with sensitivity SU is using a network
with κ = 1/SL (and vice-versa). There are two such flows:

f smc
− = R+

Hb

1 + SL/SU
and f smc

+ = R+
Hb

1 + SU/SL
.

Comparing the above to (69) and (70), we see that f smc
− = f ft−

and f smc
+ = f ft+ . Thus, since

f ft(G,SL, τ
∗) = f smc(G,SL, 1/SU),

f ft(G,SU, τ
∗) = f smc(G,SU, 1/SL),

it must be true that (re-writing now in terms of affine tolls)

Lnf(G,SL, τ
∗) = Lnf(G,SL, τ

A(1/SU, 0)), (72)

Lnf(G,SU, τ
∗) = Lnf(G,SU, τ

A(1/SL, 0)). (73)

By design, (72) equals (73), so we have that

max
s∈[SL,SU]

Lnf
(
G, s, τA(1/SU, 0)

)
= max
s∈[SL,SU]

Lnf (G, s, τ∗) .
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