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Abstract— We ask if it is possible to positively influence
social behavior with no risk of unintentionally incentivizing
pathological behavior. In network routing problems, if network
traffic is composed of many individual agents (such as drivers in
a city’s road network), it is known that self-interested behavior
among the agents can lead to suboptimal network congestion.
To mitigate this, a system planner may charge monetary tolls
for the use of network links in an effort to incentivize efficient
routing choices by the users. We study situations in which these
tolls are computed locally on each edge, as in the classical
case of marginal-cost taxation, but that the users’ sensitivity
to tolls is not known. We seek locally-computed tolls that are
guaranteed not to incentivize worse network routing than in
the un-influenced case. Our results are twofold: first, we give a
full characterization of all non-perverse locally-computed tolls
for parallel networks with arbitrary convex delay functions,
and show that they are all a generalized version of traditional
marginal-cost tolls. Second, we exhibit a type of pathological
network in which all locally-computed tolling functions can
cause perverse incentives for heterogeneous price-sensitive user
populations. That is, in general networks, the only locally-
computed tolling functions that do not incentivize pathological
behavior on some network are effectively zero tolls. Finally,
we show that our results have interesting implications for the
theory of altruistic behavior.

I. INTRODUCTION

Modern computational and infrastructure systems are be-
coming increasingly linked with the social systems that they
serve. Accordingly, engineers must be aware of the ways in
which social behavior affects the performance of engineered
systems; this has spurred recent research on influencing so-
cial behavior to achieve engineering objectives [1]-[4], [21].
Examples of interesting problems in this context include
ridesharing systems [5], transportation networks [6], and
power grids [7].

In this paper, we focus on a well-studied model of network
traffic congestion known as a “non-atomic congestion game,”
in which traffic needs to be routed across a network from a
source node to a destination node in a way that minimizes
the average delay experienced by the traffic. If a central
authority can control the traffic explicitly, it is typically
straightforward to compute the optimal assignment of traffic;
unfortunately, if the mass of traffic is composed of individual
decision-makers, the aggregate network flows that emerge

This work is supported ONR Grant #N00014-17-1-2060 and NSF Grant
#ECCS-1638214.

P. N. Brown is a graduate student researcher with the Department
of Electrical and Computer Engineering, University of California, Santa
Barbara, CA pnbrown@ece.ucsb.edu. Corresponding author.

J. R. Marden 1is with the Department of Electrical and
Computer Engineering, University of California, Santa Barbara,
jrmarden@ece.ucsb.edu.

from individual localized decision-making may be far from
optimal [8].

Accordingly, much research has focused on methods of
influencing the routing choices made by individual users; one
promising set of methodologies involves charging specially-
designed tolls to network links in an effort to incentivize
more-efficient network flows [9], [10]. In [11], [12] it
is shown that a special type of tolling function called a
marginal-cost toll levied on each network link incentivizes
optimal network routing — provided that all network users
trade off time and money equally. An attractive feature of
marginal-cost tolls is that they can be computed locally on
each network link; that is, a link’s toll depends only on that
link’s congestion characteristics and traffic flow. Thus, the
optimality guaranteed by these tolls is intrinsically robust to
variations of network structure. This local-computation prop-
erty is known as network agnosticity; in essence, marginal-
cost tolls only “know” their own edge — they are agnostic to
global network specifications [21].

Weak robustness is defined in [19] as a guarantee that a
given behavior-influencing mechanism never creates perverse
incentives. Unfortunately, the authors of [19] also show that
marginal-cost tolls are not weakly robust to variations of user
toll-sensitivity. That is, if some users value their time more
than others, networks exist on which the routing incentivized
by marginal-cost tolls is worse than un-influenced routing.

Despite this negative result for traditional marginal-cost
tolls, it has remained an open question whether some other
network-agnostic taxation mechanism exists which can be
weakly robust to variations of user toll-sensitivity. This
question was partially addressed in [13] for the simplified
case of parallel networks with linear-affine latency func-
tions, where it was shown that any weakly-robust network
agnostic taxation mechanism is essentially a generalization
of traditional marginal-cost tolls. However, this restriction to
parallel networks is not without loss of generality, as it is
also proved that there is no weakly robust network-agnostic
taxation mechanism for general asymmetric networks (that
is, networks with more than one source and/or destination).

In this paper, we present an extension of the positive
results of [13] to the case of all convex latency functions.
First, in Theorem 4.1 we define the generalized marginal-
cost taxation mechanism, and show that it is the only non-
trivial network-agnostic taxation mechanism that is weakly
robust on the class of parallel-path networks. Thus, a system
planner can apply generalized marginal-cost tolls on any
parallel network without fear of causing perverse incentives.

However, we also strengthen the negative results of [13],
and exhibit a family of symmetric networks (that is, having



a single source/destination pair and all agents having access
to the same set of paths) on which generalized marginal-cost
taxes can never be weakly-robust. Thus, in Theorem 4.2 we
rule out the possibility of a network-agnostic taxation mech-
anism being weakly-robust on general symmetric networks.
Note that this does not mean that generalized marginal-cost
tolls are not weakly-robust on every general network; merely
that without a priori knowledge of network structure, the
possibility of perverse incentives cannot be ruled out.

Finally, we show that our results imply corresponding facts
about the behavior of altruistic network users. In particular,
in the altruism model of [14], our characterization result in
Theorem 4.1 implies that in every parallel network, users
acting altruistically is socially beneficial. On the other hand,
our negative result in Theorem 4.2 implies the somewhat
paradoxical statement that there exist symmetric networks in
which it can actually be socially harmful for some (but not
all) users to act altruistically; we include these two results
in Corollary 4.3.

II. MODEL AND ROBUSTNESS
A. Routing Game

Consider a network routing problem for a network (V, E)
comprised of vertex set V' and edge set E/. A mass of r units
of traffic needs to be routed from a common source s € V' to
a common destination ¢t € V. We write P to denote the set of
paths available to the traffic, where each path p € P consists
of a set of edges connecting s to ¢. Note that this paper
considers only the case of symmetric (or single-commodity)
routing problems, in which all traffic can access the same
set of paths. A network is called a parallel-path network if
all paths are disjoint; i.e., for all paths p,p’ € P, pNyp’ = 0.

A feasible flow f € RIP| is an assignment of traffic to
various paths such that Zpep fp =, where f, > 0 denotes
the mass of traffic on path p. Given a flow f, the flow on edge
e is given by f. = Zp:eep fp- To characterize transit delay
as a function of traffic flow, each edge e € E is associated
with a specific latency function £, : [0,7] — [0,00); £c(fe)
denotes the delay experienced by users of edge e when the
edge flow is f.. We adopt the standard assumptions that each
latency function is nondecreasing, convex, continuous, and
continuously differentiable. We measure the cost of a flow f
by the ftotal latency, given by

L= fele(f) =D fo-bo(fo), (D)
eeE peEP
where £,(f) = >_.c, le(fe) denotes the latency on path p.
We denote the flow that minimizes the total latency by
fr e argmin L(f). )
f is feasible
Due to the convexity of £., L(f*) is unique.

A routing problem is given by G = (V, E,r,{{.}). The
set of all routing problems is written G, and we denote by
G, the set of all parallel-path routing problems.

To study the effect of taxes on self-interested behavior, we
model the above routing problem as a heterogeneous non-
atomic congestion game. We assign each edge e € E a flow-
dependent taxation function 7, : R™ — R™. To characterize

users’ taxation sensitivities, let each user x € [0,7] have
a taxation sensitivity s, € [SL,Sy] C R*, where S;, >
0 and Sy < +4oo are lower and upper sensitivity bounds,
respectively. Note that we allow Sy to take the value +oo.
If all users in s have the same sensitivity (i.e., s, = s, for
all z,y € [0,7]), the population is said to be homogeneous;
otherwise it is heterogeneous. Given a flow f, the cost that
user x experiences for using path p € P is of the form

Jg(f) = Z[ze(fe) +3wTe(fe)]7 3
ecp
and we assume that each user selects the lowest-cost path
from the available source-destination paths. We call a flow
f a Nash flow if all users are individually using minimum-
cost paths given the choices of other users, or if for all users
x € [0,7] we have

JE(f) = min 3 [e(fe) + same(fe)] - )
ecp

It is well-known that a Nash flow exists for any non-atomic
congestion game of the above form [15]. If the population is
homogeneous or the taxes are constant functions, these flows
are unique in cost (that is, all Nash flows have the same total
latency) [16], [17].

Let the agents be ordered according to sensitivity; that is,
let s, be a nondecreasing function of z. The set of possible
sensitivity distributions is the set of monotone-increasing
functions 8 = {s : [0,r] — [SL, Su]}.

B. Taxation Mechanisms and Robustness

To model locally-computed tolls, we consider so-called
network-agnostic taxation mechanisms. Here, each edge’s
taxation function is computed using only locally-available
information. That is, 7.(f.) depends only on /., not on
edge e’s location in the network, the network topology, the
overall traffic rate, or the properties of any other edge. A
network-agnostic taxation mechanism 7' is thus a mapping
from latency functions to taxation functions, and the taxation
function associated with latency function /. is given by

T () =T(Le). (5)

To evaluate the performance of taxation mechanisms, we
write £ (G, s,T) to denote the total latency of a Nash
flow for routing problem G and population s induced by
taxation mechanism 7. If more than one Nash flow exists,
let £*(G, s, T) denote the total latency of the worst Nash
flow. We write £ (G, ()) to denote the total latency of an
un-influenced Nash flow; note that when there are no tolls,
the sensitivity distribution plays no role.

In the robustness framework of [19], taxation mechanism
T is said to be weakly robust if for every network and
sensitivity distribution, the total latency induced by 7" never
exceeds the total latency of an un-influenced Nash flow; i.e.,
for all G € G,

sup £L™(G, s, T) < £ (G, 0) . (6)
SES
Loosely speaking, if a taxation mechanism is weakly robust,
this means that it will never create perverse incentives on
any routing problem. Note that at a minimum, the zero toll
is weakly robust.



III. RELATED WORK AND EXAMPLE

The following is a brief survey of relevant work on the
robustness of taxation mechanisms in congestion games.

The classical example of a network-agnostic taxation
mechanism is that of the marginal-cost or Pigovian taxation
mechanism 7™¢. For any edge e with latency function £,
the accompanying marginal-cost toll is

T (fe) = fe- gle(fe)v Vfe >0, )

where ¢ represents the flow derivative of ¢. In [11] the
authors show that for any G € g, it is true that £L*(G) =
LM (G, 5, T™), provided that all users have a sensitivity
equal to 1.

Recent research has identified several new network-
agnostic taxation mechanisms, which are all in some sense
generalizations of 7™¢. For example, [18] exhibits a univer-
sal taxation mechanism which achieves weak robustness with
large tolls. In parallel networks, [21] studies scaled marginal-
cost tolls for parallel networks under a utilization constraint.
In [19], it is shown that constant tolling functions can never
be weakly robust, even on parallel-path networks. In [13],
the authors show that for linear latency functions,

Te(fe) = ’faaefe + bem ()

can be weakly-robust for parallel networks if x, > 0 and
Ky > 0 are chosen carefully. However, [13] contains an
impossibility result showing that no non-trivial network-
agnostic taxation mechanism can be weakly robust on gen-
eral asymmetric networks.

Here, we exhibit a new type of pathology for marginal-
cost tolls. In contrast to the pathology reported in [13] for
asymmetric networks, our example occurs for symmetric
networks as well.

Example 3.1: Consider the network in Figure 1, with the
well-known Braess’s Paradox network [20] in parallel with a
constant-latency edge. Charge marginal-cost tolls (7) on the
network. If the user population has 2 units of traffic and a
homogeneous toll sensitivity of s € [0, 1], it is easy to verify
that that unique Nash flow on this network is the one labeled
“Efficient Nash Flow” in Figure 1. In this flow, all have a
cost of 2+ s since deviating to the zig-zag path would yield
a larger cost of 2 4 2s, and deviating to the constant-latency
link would yield a cost of 3. This gives a total latency of
2x2=4.

Now consider a heterogeneous population with 1 unit of
sensitivity s; = 0 traffic (orange in Figure 1), and 1 unit
of sensitivity so = 1 traffic. A new Nash flow emerges:
one with all insensitive traffic using the zig-zag path, and all
sensitive traffic using the constant-latency link; this is labeled
“Inefficient Nash Flow” in Figure 1. In this flow, any agent
on the zig-zag path has a delay of 2, but any agent on the
constant-latency path has a delay of 3, for a total latency of
2 4+ 3 = b, greater than the un-tolled total latency of 4.

L ]
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Fig. 1. Example 3.1: Marginal-cost tolls are not weakly robust to user
heterogeneity. The user population has total mass 2, half of which has
sensitivity s = 0, half of which has sensitivity so = 1. Here, marginal-cost
tolls induce multiple Nash flows; two of these are depicted in the figure. On
the left, all of the insensitive traffic (orange) is using the zig-zag path, with
a latency of 2; all the sensitive traffic (green) is using the constant-latency
edge, with a latency of 3 — for a total latency of 5. On the right flow, all
traffic is experiencing a latency of 2, for a total latency of 4. Here, any
homogeneous population using this network has the right-hand flow as a
unique Nash flow. Thus, marginal-cost tolls incentivize a flow that is 25%
worse than the un-influenced Nash flow; i.e., they are not weakly robust.

IV. OUR CONTRIBUTIONS

A. Weakly Robust Network Agnostic Taxation Mechanisms
for Parallel Networks

Theorem 4.1 characterizes the space of weakly-robust
network-agnostic taxation mechanisms for parallel-path net-
works and arbitrary admissible latency functions. Specifi-
cally, we show that all weakly-robust network-agnostic taxa-
tion mechanisms can be expressed as a simple generalization
of classical marginal-cost tolls. Thus, perverse incentives
can be systematically avoided on parallel-path networks by
applying 78™¢.

Theorem 4.1: A network agnostic taxation mechanism is
weakly robust on G, if and only if it assigns generalized
marginal-cost tolls

TEN(fe) = male(fe) + rafeli(fe), )
where k1 > —1/SU, ko >0, and ko < K1 + 1/SU
The proof of Theorem 4.1 appears in the appendix.

B. Impossibility for General Symmetric Networks

Given the characterization of weakly-robust tolls for paral-
lel networks given in Theorem 4.1, it is an attractive goal to
extend the analysis beyond parallel networks. Unfortunately,
one need not go far before even 7%™¢ fails to be weakly
robust. In particular, we show in Theorem 4.2 that even the
relatively restrictive condition of symmetry (all agents have
access to the same set of paths) is not sufficient to guarantee
the existence of nontrivial weakly-robust taxation mecha-
nisms. This means that if network structure is unknown, the
only way to avoid perverse incentives is effectively to do
nothing.

Theorem 4.2: Let G denote the class of all symmetric
networks. If Sy, = 0 and Sy > 0, a network-agnostic taxation



mechanism 7" is weakly robust on G if and only if it is trivial;
that is, for every network G' € G and every population s it
satisfies

L@, s, T) = £(G,0).

Note that the “trivial tolls” of Theorem 4.2 are any tolls
satisfying xl.(f.) for £ > 0; these tolls have no effect on
any Nash flow, and are thus strategically equivalent to tolls
of 7(fe) = 0.

Proof: Theorem 4.1 gives necessary conditions for
weak robustness (since G, C G), so suppose we are given a
taxation mechanism assigning taxes of 7.(f.) = k1lc(f.) +
Ko fell(fe), where k1 > —1/Sy, and ke < k1 + 1/Su.
If ko = 0, this taxation mechanism satisfies (10), so let
ko > 0. It suffices to exhibit a user population s (that is,
a distribution of tax-sensitivities) and a network GG such that
L£(G,s,T) > LM(G, 0). We will do this with a population
having two sensitivity values s; < S92 and a network
resembling that in Figure 1. Let s, satisfy 0 < sy < Sy,
and let s; = 0 to model the extreme case.! Construct the
population as follows: let a unit mass of users have sensitivity
s1 and a unit mass have ss, for a total of 2 units of traffic.
Define 7, £ 5262 ¢ (0, 1], so any agent with sensitivity

1+s2K1
so sees an effective cost function? on edge e of

Je(fe) :Ee(fe)""_VZfeé/e(fe)' (11

Now, let G be the network depicted in Figure 1, but let
the latency function on edge eg be ley (feg) = 2 + 7o
Enumerate the paths as follows: denote the “zig-zag” path
p1 = {e1, €5, e4}, the remaining two paths in the upper sub-
network ps = {e1,e3} and p3 = {ea,e4}, and the isolated
constant-latency path ps = {eg}; and denote the path flow of
p; by f;. We will refer to paths py, p2, and ps as the “Braess
subnetwork.”

This population has at least two distinct Nash flows,
corresponding to the two Nash flows depicted in Figure 1. We
will write the inefficient flow (in which only half the agents
use the Braess subnetwork) as fPerverse 2 (1,0,0, 1) and the
efficient flow (in which all agents use the Braess subnetwork)
as fefficient 2 (0 11,0). Note that in either flow, the
delay experienced by agents on the Braess subnetwork is
2. However, in fPVerse  half of the agents (those on py)
experience a delay of 2 + 4o > 2. Thus, L (fPerverse) =
4+ 72, while £ (fefficient) — 4,

It can easily be verified that if tolls are removed,
only fefﬁde“t remains as a Nash flow, which means that
L (fefﬁcient) — ﬁnf(G, @)’ or

LG, s, T) > £ (G, 0)

(10)

12)
and the considered tolls are not weakly-robust. [ ]

C. Implications for Altruistic Behavior

All of the foregoing has assumed that users are selfish
and act with the sole objective of minimizing personal cost.

"Here, it is also possible to show perversities by letting s1 be any
sufficiently-small positive number; we let s; = O for the sake of parsimony.
2See the argument in the proof of Lemma 5.2 in the Appendix.

However, real users may act altruistically, with the public
good in mind. Recent research has investigated this in the a-
altruism model, which assigns each user x an altruism level
ay € [0,1]; a user with o = 0 is totally selfish, whereas a
user with o = 1 is totally altruistic [14]. This is modeled by
assuming that user = (with corresponding altruism level o)
on edge e experiences a cost of

JE(f) = (1 — an)te(f.) + az% (Fule (1)

=Le(fe) + agfeli(fe)-

In other words, a totally-altruistic user fully accounts for the
marginal effects that his actions have on those around him.

By comparing the cost functions induced by marginal-cost
tolls (7) with the cost functions experienced by altruistic
players (13), it is clear that there is a deep connection
between this model of a-altrusim and the theory of marginal-
cost taxation. In essence, marginal-cost taxes are designed to
induce artificial altruism in the user population.

The authors of [14] exhibit two contexts in non-atomic
congestion games in which worst-case performance improves
with increasing levels of altruism: the first is in general
networks with homogeneous altruism, and the second is in
parallel networks with heterogeneous altruism. In both cases,
if the average level of altruism in the population increases,
worst-case performance improves.

Given the equivalence of marginal-cost taxation and al-
truism, our Corollary 4.3 strengthens the parallel-network
result of [14], showing that on any network, the worst-
case flows are realized by a low-altruism homogeneous
population. Note that [14] proves that altruism helps in worst-
case over all parallel networks; our result is a network-by-
network analysis and shows that altruism also helps on each
individual network.

On the other hand, given our impossibility result in The-
orem 4.2, Corollary 4.3 shows that increased altruism does
not, in general, improve performance. That is, on the network
in Figure 1, a totally-selfish population is associated with
the efficient Nash flow, but a partially-altruistic population
is associated with the inefficient Nash flow.

In the following, £ (G, @) denotes the worst-case Nash
flow total latency on G for a given altruism distribution
«, where users in « take altruism levels in the interval
[AL, Au] C [0,1]. A homogeneous altruism distribution in
which all users have value Aj, is denoted or.

Corollary 4.3: For any G € G,

(13)

LG, a) < L2 (G, a").

a.

(14)

However, for some G ¢ Gp, there exists an altruism distri-
bution « satisfying

L3(G ) > L (G, a"). (15)

Proof: Any Nash flow induced by 7¢™¢ is a Nash flow

for some altruism distribution (see, e.g., the argument in the
proof of Lemma 5.2 in the Appendix). Thus, Corollary 4.3
is implied by Theorems 4.1 and 4.2. [ ]



V. CONCLUSION

This paper has fully characterized the weakly-robust
network-agnostic taxation mechanisms for parallel networks,
and ruled them out entirely for general networks. We have
shown that except in very limited settings (e.g., parallel
networks), local computation of incentives carries a risk of
causing harm. Among other things, this seems to indicate that
information about the structure of the network is crucial for
avoiding perverse incentives; characterizing these types of
informational dependencies is the subject of ongoing work.
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Fig. 2. Example networks used to prove Lemma 5.2.

APPENDIX: PROOF THEOREM 4.1

As a first step toward proving Theorem 4.1, we prove in
Lemma 5.1 that all weakly-robust network-agnostic taxation
mechanisms are essentially a generalized form of marginal-
cost tolls. This lemma shows that tolls of the 7%™¢ form are
necessary for weak robustness.

Lemma 5.1: If network-agnostic taxation mechanism 7' is
weakly robust on G,, then for every edge e, it assigns taxation
functions satisfying the conditions of Theorem 4.1.

Proof: Consider the four networks in Figure 2. The
general approach is to exhibit networks whose un-tolled Nash
flow is optimal; on these networks, weakly-robust tolls must
not cause any deviations from the un-tolled flows. Thus, these
networks can be used to deduce the necessary form of any
weakly-robust tolls. In the interest of space, we give only an
outline of the argument.

In the following, 7" represents a network-agnostic weakly-
robust taxation mechanism. If the latency functions on the
network in Figure 2(a) satisfy ¢; +f2 = /3, the corresponding
tolling functions must as well; or T is additive: T'(¢1) +
T(ls) = T(¢y + £3). Similarly, by setting ¢, {2, and {3
to constant functions, it can be shown that T'(¢) is constant
whenever /¢ is constant.

The network in Figure 2(b) shows that degree-d monomial
latency functions of £(f) = a(f)? must be assigned degree-
d monomial tolling functions of T'( f) = na(f)?. Figure 2(c)
shows that the tolls must not be too aggressive; that is, n =
K1+ kad, where ko < k14 1/Sy is required to prevent users
with sensitivity Sy from using edge 2 when 7 is low. The
tolls must effectively be marginal-cost tolls “tuned” for users
with Sy sensitivity.

Finally, applying the previously-proved facts, the network
in Figure 2(d) is constructed with an arbitrary convex latency
function and a monomial latency function specially-designed
so that the uninfluenced flow is equal to the optimal flow.
Since the monomial latency function’s toll has already been
specified, this allows direct computation of the toll assigned
to the arbitrary convex latency function. [ ]

Next, Lemma 5.2 shows that Nash flows on parallel-
path networks behave nicely under the influence of 7'8™¢.
Specifically, Lemma 5.2 proves that the worst-case total
latency on a parallel network with 7®™¢ is realized by a



low-sensitivity homogeneous population.

Lemma 5.2: Let s* denote a homogeneous population in
which every user has sensitivity S;, > 0, and denote by
T8¢ a taxation mechanism satisfying the conditions of
Lemma 5.1. For any G' € G, and any population s in which
every user has a sensitivity no less than St,,

£ (G, st 1Eme) > LG s, TEM) (16)

Proof: When ko > 0 and k1 > ke — 1/Sy, the

expression {342 € [0,1] and is monotone increasing in

s,. Thus, it can be assumed without loss of generality that
k1 =0, kg = 1 and cost functions are simply given by

JE(fe) = Le(fe) + sufeli(fe),
where s,, € [0, 1] for all z.

Let £2(f) 2 foll(fo). let 2(f) 2 Lo(fe) + sL(f).
and ¢7¢(f.) £ £1(f.) to denote the nominal marginal-cost
toll, the cost experienced by user with sensitivity s, and the
marginal-cost function of edge e, respectively.

Following the arguments for Claim 1.1.2 in [21], it can be
shown that on GP, for any population s under the influence of
Te™¢, the following facts hold for any two paths satisfying
4;(0) < ¢;(0), fJ’f]f > 0, and where a user z is on p; and user
y on pj:

a7

(18)
19)

When ¢;(0) < £;(0), inequality (18) is strict. That is, the
marginal costs in a Nash flow are ordered in such a way
that lower-sensitivity agents always use higher marginal-cost
paths than higher-sensitivity agents.

The remainder of the proof consists of showing that
reducing agents’ sensitivities (thereby making the population
“more homogeneous”) shifts agents from low marginal-cost
paths to high marginal-cost paths, increasing the total latency.
Formally, we define a mapping % : [0,1] x 8 — 8. For any
starting population s and any o, we will define ¥ (a;s%)
as a right-shift of s° by « units. The sensitivity of user z in
population (a, %) is given by

S(a, %)y = { s0(0)

so(z — a)

ifx <o«
if > a.
Because s is defined to be a nondecreasing function, this is
equivalent to converting a mass of « of the most-sensitive
users to a mass « of the least-sensitive users.

Again following the arguments in [21], assume without
loss of generality that Nash flows have a finite number of
sensitivity types. To be precise, given a Nash flow ™, we
will assume for each path p; € P \ py, each user has a
sensitivity s; that makes her indifferent between paths p;
and path p;_;.

For brevity, let f*(a) £ (2 (a;s0)). Our central goal
will be to characterize the effect of marginal increases in «,
which is expressed % /(). The following definition will
be helpful in the proof:

Definition 1: In a Nash flow f™f, paths p; and p; with i <
j are strategically coupled if s; satisfies £;* (f7*) = €5 (f}).
That is, agents on the lower-index path are indifferent

(20)

between the two paths. P;(f"f) denotes the set of paths that
are strategically coupled to path p; in ff.3

First, we show that the primary effect of an increase in «
is to shift traffic from P,, to P;.

Proposition 5.3: For every path p; € Py, a%f{‘f(a) > 0.
For every path p; € P, %f;‘f(a) <0.

Proof: Let s; denote the sensitivity of agents using pj.
Increasing « changes the sensitivity of a small fraction of
high-sensitivity users to s;. By Definition 1 and (18)-(19),
these users strictly prefer the paths in P; to any other paths
and thus switch to P;. It is straightforward to show that
this increases the flow on all paths in P;, proving the first
statement; a parallel argument proves the second, showing
that these switching users must leave paths in P,,. [ |

Proposition 5.4: For any c, if p; ¢ Pi(a) and p; ¢
Pr(e), it holds that 2 f5f(a) = 0.

Proof: Definition 1 has been constructed to ensure that
all users on P; strictly prefer it to P;41; thus, a marginal
flow increase on P; cannot cause users to deviate to P;4.
Similarly, a flow decrease on P;;; cannot cause users on P;
to deviate to P; ;. Considering these facts, Proposition 5.3
implies that shifting traffic from P,, to P; affects flow only
on those two sets of paths, implying Proposition 5.4. [ ]

Proof of Lemma 5.2: In the following, V ; L( f) represents
the gradient vector of L with respect to flow f given by
{65} pep, which by (18)-(19) is ordered descending. Let p,
be the highest-index path in P;, and pj, be the lowest-index
path in Pp:

L (@) = V4L (7 (@) - 2= (a)

S () o )

1€P;UP,

(27 (£7() = 62° (£ ()] Z 0.
Since at every Nash flow f™(a) it is true that

ZL(f(a)) > 0, the definition of ¥ (c, so) implies that

for any initial sensitivity distribution s,

L (2L s0) = L (2(0,5)), @D
or that £ (G, sL,Tng) > (@, s, T8™°) . ]
Proof of Theorem 4.1: Let s be any arbitrary sensitivity
distribution, s* be a homogeneous population with sensitivity
St,, and apply T%™¢, Lemma 5.2 ensures that
£11f (G, SL,Tng> > Enf (G, S’Tgm(:) . (22)
Let s° be a homogeneous population with sensitivity 0.
Since s is itself a low-sensitivity homogeneous population
and s is a population in which all users have sensitivity no
less than 0; apply Lemma 5.2 a second time to obtain
Enf (G, 50, Tgmc) > £11f (G, SL,Tng) . (23)
The left-hand side of (23) is simply the un-tolled total latency
on (G, so combining inequalitites (22) and (23), we obtain

L£(G,0) > £ (G, s, T5™). (24)

Since G and s were arbitrary, this implies that 75™¢ is
weakly-robust on G,,. |

v

3When clear from context, we write P;(f*f) simply as P;.



