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An Upper Bound on the Cardinality of a Minimum
Feedback Vertex Set for Directed Graphs

Abstract

We derive an upper bound on the cardinality of a minimum feedback vertex set for arbitrary directed graphs, and provide
example graphs which achieve this bound.

Let G = (V,E) be a directed, not necessarily connected graph. A subset of vertices M ⊆ V is called a minimum feedback
vertex set if the subgraph induced by the removal of M from G contains no directed cycles and M is the smallest such
set of vertices. The problem of finding a minimum feedback vertex set in an arbitrary graph is known to be NP-hard even
in sparse graphs [1], [2] and its decision version was one of Karp’s original 21 NP-complete problems [3]. Nonetheless,
identifying minimum feedback vertex sets in directed graphs has applications in a number of disparate domains, including
deadlock recovery in operating systems and computer engineering [4], and determining the inefficiency of Nash equilibria in
game theory [5].

Recent years have seen considerable attention focused on deriving bounds on the cardinality of the minimum feedback vertex
set for undirected graphs. For instance see bounds for planar graphs [6], hypercubes [7], shuffles [8], and further conjectures [9].
However, there seems to be a lack of similar results for the valuable case of directed graphs. Accordingly, this note presents a
simple upper bound for this quantity for directed graphs as a function of the number of nodes and edges. We present graphs
that achieve this bound. While tight in general, this bound can almost certainly be improved on specific classes of graphs, and
we invite improvements from the mathematical community.

I. PRELIMINARIES

We present the following definitions to ensure our results are clear. A directed graph G = (V,E) (or digraph) is specified by
vertex set V and edge set E and we assume that G is simple (i.e., we forbid repeated edges or self-loops), but we do not require
that G is connected. A directed cycle is a sequence of distinct edges {e1, e2, . . . , em} and a corresponding sequence of distinct
vertices {v1, v2, . . . , vm} such that for all i < m, ei = (vi, vi+1) and em = (vm, v1). Note that a directed cycle can have length
2; i.e., the graph ({v1, v2}, {(v1, v2), (v2, v1)}) has a directed cycle. A digraph G is called acyclic if if it contains no directed
cycles. A set of vertices M ⊆ V is called a feedback vertex set if the graph (V \M,E \ {(i, j) ∈ E | i ∈M or j ∈M}) is
acyclic. The set M is called a minimum feedback vertex set if it is a feedback vertex set of minimum cardinality. We write
α(G) to denote the cardinality of a minimum feedback vertex set for digraph G.

II. CONTRIBUTION

Our main result gives a tight upper bound for all (not necessarily connected) digraphs as a function of the number of edges.

Theorem 1. Let G = (V,E) be a digraph. Then

α(G) ≤ min

{
|V | − 1,

⌊
|E|
2

⌋}
. (1)

There exist graphs which achieve this bound.

Proof. First we show the edge-based upper bound. Let G be a directed graph, and let M(G) be a minimum feedback vertex
set of G. We wish to show that

2α(G) ≤ |E|. (2)

Enumerate the m vertices in M(G) := {u1, u2, . . . , um}. Define the sequence {Gi}mi=0 as follows: G0 = G, and Gi is the
digraph that results from the removal of ui and all incident edges from Gi−1. By the definition of M(G), each vertex ui is
contained in at least one cycle in graph Gi−1. Since each ui is contained in a cycle in Gi−1, it follows that at least 2 edges
are incident on ui in Gi−1. Since the sequence of graphs satisfies E(Gi) ⊂ E(Gi−1), this means that for all i = 1, . . . ,m, at
least 2 unique edges are incident on vertex ui which are not incident on uj for any j < i. Thus, writing E(M(G)) to denote
the set of edges incident on M(G), we have that

2α(G) ≤ |E(M(G))| ≤ |E|. (3)

To show the edge-based lower bound, we construct a family of graphs which satisfy (1) with equality for all k, where
|E| = k. Let |V | = 2bk/2c, and let E = {(2i, 2i− 1)∪ (2i− 1, 2i) | i ∈ {1, . . . , |V |/2}} (see Figure 1). If |E| is odd, define
the single remaining edge between any feasible pair of vertices (e.g., (1, 3)). Since this graph contains exactly |V |/2 disjoint
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length-2 directed cycles, the cardinality of any minimum feedback vertex set is exactly |V |/2 (e.g., the set of odd-numbered
vertices is such a set).

The vertex-based upper bound is trivial, since if |V | − 1 vertices and associated edges are removed from any graph, the
resulting graph is a single vertex and thus acyclic. The vertex-based lower bound is achieved by a complete digraph.
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Fig. 1. Graph with α(G) = b|E|/2c, achieving the bound given in Theorem 1 in (1) (Graphe avec α(G) = b|E|/2c, qui atteignent le majorant de
Theorem 1).


