
All LOCATION data refer to the following website where programs are stored.
 www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
An index of the Mathematica programs below is shown at the end of this document.

PROGRAM: CoinTosses
CALLING SEQUENCE: CoinTosses[n, print]
PARAMETERS: n - an integer, print - a Boolean variable (True or False)
SYNOPSIS:
 - This program simulates n tosses of a fair coin, and prints the proportion of tosses
 that come up heads. If print = True, then the outcomes of the tosses (H/T) are
 also printed.
RETURNED VALUES:
 - none
LOCATION:
 Folder: Chapter 1
 File: "CoinTosses.Chpt1.mat"
Clear[CoinTosses];
CoinTosses[n_, print_] :=
Block[
 {headcounter = 0,outputstring = ""},
 For[i = 1, i <= n, i++,
 If[(Random[] < .5),
 headcounter++;
 If[print,
 outputstring =
 StringInsert[outputstring, "H", i]
],
 If[print,
 outputstring =
 StringInsert[outputstring, "T", i]
]
]
];
 Print[outputstring];
 Print[" "];
 Print["The proportion of heads in ", n,
 " tosses is ", N[headcounter/n, 5]
]
]

Example for CoinTosses
CoinTosses[100, True]
HTHTHHHHTHTHHTTTHHTTTTHTTHTHTTTTTTHTTTHTHHHTHHHTTHHTHTTHHT
TTTHTTHTHTHTHTHHTHHTHTTTHHHHTTTHHTHTHTTTHT

The proportion of heads in 100 tosses is 0.46

PROGRAM: DeMere1
CALLING SEQUENCE: DeMere1[n, print]
PARAMETERS: n - an integer, print - a Boolean variable (True or False)
SYNOPSIS:
 - This program simulates 4 rolls of a die, and determines whether a six has
 appeared (a "success"). It repeats this experiment n times, and prints the number
 of trials that resulted in a success. It also prints the proportion of trials that
 resulted in a success. Finally, if print = True, then the rolls are printed out.
 RETURNED VALUES:
 - none
LOCATION:
 Folder: Chapter 1
 File: "DeMere1&2.Chpt1.mat"
Clear[DeMere1];
DeMere1[n_, print_] :=
Block[
 {successcounter = 0,
 currentrollset = {}
 },
 For[i = 1, i <= n, i++,
 currentrollset = {};
 For[j = 1, j <= 4, j++,
 currentrollset =
 Append[currentrollset,
 Ceiling[6*Random[]]
];
];
 If[print, Print[currentrollset]
];
 If[Count[currentrollset, 6] > 0,
 successcounter++
];
];
 Print["number of successes = ",
 successcounter
];
 Print["proportion of successes = ",
 N[successcounter/n, 5]
]
]
Example for DeMere1
DeMere1[1000, False]
number of successes = 522
proportion of successes = 0.522

PROGRAM: DeMere2
CALLING SEQUENCE: DeMere2[n, m, print]
PARAMETERS: n, m - integers
 print - a Boolean variable (True or False)
SYNOPSIS:
 - This program simulates m rolls of two dice, and determines whether a double 6
 has appeared (a "success"). It repeats this experiment n times, and prints the
 number of trials that resulted in a success. It also prints the proportion of trials
 that resulted in a success. Finally, if print = True, then the rolls are printed out.
RETURNED VALUES:
 - none
LOCAT ION:
 Folder: Chapter 1
 File: "DeMere1&2.Chpt1.mat"
Clear[DeMere2];
DeMere2[n_, m_, print_] :=
Block[{successcounter = 0,
 currentrollset = {}
 },
 For[i = 1, i <= n, i++,
 currentrollset = {};
 For[j = 1, j <= m, j++,
 currentrollset =
 Append[currentrollset,
 {Ceiling[6*Random[]],
 Ceiling[6*Random[]]
 }
];
];
 If[print, Print[currentrollset]
];
 If[Count[currentrollset, {6, 6}] > 0,
 successcounter++
];
];
 Print["number of successes = ",
 successcounter
];
 Print["proportion of successes = ",
 N[successcounter/n, 5]
]
]
Example for DeMere2
DeMere2[1000, 24, False]
number of successes = 475
proportion of successes = 0.475

PROGRAM: RandomNumbers
CALLING SEQUENCE: RandomNumbers[n]
PARAMETERS: n - an integer
SYNOPSIS:
 - This program generates and displays n random real numbers between 0 and
 1.
RETURNED VALUES:
 - none
LOCATION:
 Folder: Chapter 1
 File: "RandomNumbers.Chpt1.mat"

Clear[RandomNumbers];
RandomNumbers[n_] := Do[Print[Random[]],
 {n}
]
Example for RandomNumbers
RandomNumbers[3]
0.132088
0.459366
0.178864

PROGRAM: SpikegraphWithDots
CALLING SEQUENCE: SpikegraphWithDots[distributionlist, xmin, xmax, color, print]
PARAMETERS:
 distributionlist - a distribution list
 xmin, xmax - real numbers
 color - a list of 3 color-specification real numbers
 print - a Boolean variable (True or False)
SYNOPSIS:
 - This program displays a graph of the distribution of x (where x has the
 distribution given in distributionlist) by drawing a spike of height p(x) at each x,
 and topping that spike with a dot of color color. If print = True, this graph is
 displayed. Otherwise, the display is (for the time being) suppressed. (If the
 graph has been suppressed, to see it at a later time type "Show[%#,
 DisplayFunction -> $DisplayFunction]", where # is the input number of the
 original call to SpikegraphWithDots.) The input distribution list is assumed to be
 in increasing order of the x-values. Important note: only values of x which fall
 in the user-defined interval [xmin, xmax] will be included in the graph. If not all
 values of x are included, and print = True, a warning is displayed. If print = False,
 no such warning will be given, even if the graph is later displayed.
RETURNED VALUES:
 - none
LOCATION:

 File: "Important Programs"

Clear[SpikegraphWithDots];
SpikegraphWithDots[distributionlist_, xmin_, xmax_,
 color_, print_] :=
Block[{num = Length[distributionlist],
 j, k,
 linelist
 },
 linelist = Table[Line[{distributionlist[[i]],
 {distributionlist[[i]][[1]], 0}}
],
 {i, 1, num}
];
 pointlist = Table[Point[distributionlist[[i]]],
 {i, 1, num}
];
 j = 1;
 While[distributionlist[[j]][[1]] < xmin,
 linelist = Drop[linelist, 1];
 pointlist = Drop[pointlist, 1];
 j++
];
 k = num;
 While[distributionlist[[k]][[1]] > xmax,
 linelist = Drop[linelist, -1];
 pointlist = Drop[pointlist, -1];
 k--
];
 finallist = Join[linelist, pointlist];
 If[print,
 If[((distributionlist[[1]][[1]] < xmin)||
 (distributionlist[[num]][[1]] > xmax)),
 Print["Note: some outcome values lie outside the
user-defined interval."]
];
 Show[Graphics[linelist],
 Graphics[{PointSize[.02],
 RGBColor[color[[1]], color[[2]],
color[[3]]],
 pointlist}
],
 PlotRange -> All,
 Frame -> True
],
 Show[Graphics[linelist],
 Graphics[{PointSize[.02],

 RGBColor[color[[1]], color[[2]],
color[[3]]],
 pointlist}
],
 DisplayFunction->Identity,
 PlotRange -> All,
 Frame -> True
]
]
]

PROGRAM: SimulateDiscreteVariable
CALLING SEQUENCE: SimulateDiscreteVariable[plist]
PARAMETERS:
 plist - a probability list
SYNOPSIS:
 - This program simulates an experiment which has outcomes x_1, x_2, ...,
 x_(Length[plist]) with probabilities plist[[1]], plist[[2]], ..., plist[[Length[plist]]],
 respectively. The program returns i, where x_i is the outcome of the experiment.
RETURNED VALUES:
 - i , where x_i is the outcome of the experiment
LOCATION:
 File: "Important Programs"

Clear[SimulateDiscreteVariable];
SimulateDiscreteVariable[plist_] :=
Block[{r, j = 1, subtotal = 0},
 r = Random[];
 While[subtotal <= r,
 subtotal = subtotal + plist[[j]];
 j++
];
 Return[j - 1]
]

PROGRAM: GeneralSimulation
CALLING SEQUENCE: GeneralSimulation[n, plist, m, print]
PARAMETERS: n, m – integers, plist - a probability list
 print - a Boolean variable (True or False)
SYNOPSIS:
 - This program simulates a general experiment in which the outcomes 1, 2, ..., n
 occur with probabilities p(1), p(2), ..., p(n). These probabilities are entered as a
 list in plist. The experiment is repeated m times, and the observed frequencies of
 the outcomes are printed. In addition, spike graphs of the observed data
 frequencies and plist data frequencies are displayed on the same set of axes;

 the observed data spikes are topped with blue dots, and the plist data spikes are
 topped with red. If print = True, the outcomes are printed. Finally, the program
 returns a list of the n observed frequencies.
 - Note: this program requires the programs "SimulateDiscreteVariable[plist]" and
 "SpikegraphWithDots[distributionlist, xmin, xmax, color, print]" be initialized.
RETURNED VALUES:
 - a list of the n observed frequencies
LOCATION:
 Folder: Chapter 1
 File: "GeneralSimulation.Chpt1.mat"
Clear[GeneralSimulation];
GeneralSimulation[n_, plist_, m_, print_] :=
Block[{x,
 observedfreqlist = Table[0, {j, 1, n}],
 j,
 subtotal,
 alist, blist
 },
 For[i = 1, i <= m, i++,
 w = SimulateDiscreteVariable[plist];
 observedfreqlist[[w]]++;
 If[print, Print[w]];
];
 Print[" "];
 Print["Outcome p(k) p*(k)"];
 Print[" "];
 For[k = 1, k <= n, k++,
 Print[k, " ",
 plist[[k]], " ",
 N[observedfreqlist[[k]]/m, 5]
];
];
 alist = Table[{i, N[observedfreqlist[[i]]/m, 5]},
 {i, 1, Length[observedfreqlist]}
];
 blist = Table[{i, plist[[i]]},
 {i, 1, Length[plist]}
];
 g1 = SpikegraphWithDots[alist, 1, Length[alist],
 {0.170, 0.110, 1.000}, False
];
 g2 = SpikegraphWithDots[blist, 1, Length[blist],
 {1.000, 0.030, 0.049}, False
];
 Show[g1, g2, DisplayFunction -> $DisplayFunction];
 Return[N[observedfreqlist/m, 5]]

]
Example for GeneralSimulation
GeneralSimulation[7, {.2, .1, .05, .27, .11, .19, .08}, 1000,
 False]
Outcome p(k) p*(k)

1 0.2 0.207
2 0.1 0.091
3 0.05 0.047
4 0.27 0.272
5 0.11 0.125
6 0.19 0.17
7 0.08 0.088

1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

PROGRAM: MonteCarlo
CALLING SEQUENCE: contecarlo[n, f, xmin, xmax, ymax]
PARAMETERS:
 n - an integer
 f - the name of a pre-defined function of one variable
 xmin, xmax, ymax - real numbers
SYNOPSIS:
 - This program estimates the area under the input function f[x] and above the
 interval [xmin, xmax] by choosing n random points in the rectangle above the
 interval [xmin, xmax] and between the y-values 0 and ymax. The function f[x] is

 assumed to be non-negative on the interval [xmin, xmax], and is assumed to
 have a maximum value which does not exceed ymax. (Note: it is not necessary
 that the maximum value of f[x] = ymax.) The program returns its area estimate,
 and also plots the random points and the function f[x] on the interval [xmin,
 xmax].
 - Keep in mind that the function f[x] should be defined before this program is
 called, and then the name of the function, namely f (or some other name, like
 Cos) should be given to this program. The expression for the function (such as
 x^2, for example) should not be given as a parameter.
RETURNED VALUES:
 - none
LOCATION:
 Folder: Chapter 2
 File: "MonteCarlo.Chpt2.mat"
Clear[montecarlo];
montecarlo[n_, f_, xmin_, xmax_, ymax_] :=
Block[{boxarea = ymax*(xmax - xmin),

(* Because of a bug in the Mathematica function Random, we
 must first take numerical approximations to the input values
 xmin, xmax, and ymax.
*)

 nymax = N[ymax],
 nxmax = N[xmax],
 nxmin = N[xmin],
 count = 0,
 randpoint,
 pointlist = {}
 },
 For[i = 1, i <= n, i++,
 randpoint = {Random[Real, {nxmin, nxmax}],
 Random[Real, {0, nymax}]
 };
 pointlist = Append[pointlist, randpoint];
 If[(randpoint[[2]] <= f[randpoint[[1]]]),
 count++
];
];
 Print[(count/n)*ymax*(xmax - xmin)//N];

(* In the following command, the first two graphics calls
are given the option DisplayFunction -> Identity so
that they are not plotted on the screen. Then the Show
command is given the two plots with the DisplayFunction
option set back to the default value. This results in

only one graph being shown on the screen, rather than
three.*)

 Show[{Plot[f[x], {x, xmin, xmax},
 DisplayFunction -> Identity],
 ListPlot[pointlist, DisplayFunction -> Identity]
 }, DisplayFunction -> $DisplayFunction,
 AspectRatio -> 1
];
]

Example for Montecarlo.
Clear[f];
f[x_] := x^2
montecarlo[100, f, 0, 1, 1]
0.35

Index of above programs:

CoinTosses --Generates a sequence of H’s and T’s and tells the percentage of H’s
DeMere1 – generates sample fraction of wins for de Mere’s first game
DeMere2 --generates sample fraction of wins for de Mere’s second game
RandomNumbers –generates a sample of random numbers from (0,1)
SpikegraphWithDots --subroutine
SimulateDiscreteVariable --subroutine
GeneralSimulation --generates a sample from a specified discrete distribution—requires
initialization of subroutines SimulateDiscreteVariable and SpikegraphWithDots.
Montecarlo –estimates area under a curve inside a rectangle

