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I. OPPORTUNISTICGRIDING

Data traffic in sensor networks follows many-to-one patteissally the area close to the sink
is always crowded if uniform grid is used [1Qpportunistic gridingis therefore advantageous in
smoothing energy distribution. Grids close to the sink,cltave heavier traffic load, will have a
smaller size compared with those are farther away, suchatlsbrter transmission range is used.
Sensors that are far away have less traffic, but have to trawsertionger distance. This method
will intuitively balance out the uneven traffic distributiclue to geometric location, and thus make

network lifetime much longer.
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Fig. 1. Opportunistic Griding with Size Ratip

In Fig. 1 (a), the area of the entire sensing fieldiis Sink node locates at the lower left corner,
and the field is recursively divided with size ratjo Notice that if the sink node is located at an
arbitrary position, this network division can be repeatedour different quadrants with sink node
as the origin. Without loss of generality, we normalize thex A sensing field to a unit square
as in Fig. 1 (b). With a grid-based clustering scheme, thezelaee possible cases of transceiver
locations for a wireless transmission: between a clustéerand the grid head within the same
grid; between two grid heads of neighbor grids, where thdsgdan be diagonalAQ in grid 1
and3) or parallel RS in grid 2 and4) to each other. In the following sections, we first deal with
distance distribution with uniform size, i.e., uniform d@jrig, then derive the more complicated

cases with the size ratio gf



[I. DISTANCE DISTRIBUTIONS
As long as the coordinate distributions of two nodes areinbth we can get the distance
distribution according to its definition, i.eR(D < d) where D = \/(Xl — X9)?2 4+ (Y1 — Y2)2.
LetV = X; — Xy (orY; —Y2), S =V2 Z =Sx + Sy andD = v/Z, our goal is to obtain

fp(d), i.e., the distance probability density function of the teases described above.

1) Difference Distribution: With V' = X; — X5, the cumulative distribution function df is
Fy(v) = P(X1—Xy <w) = f;f)_v [ffooo fX17X2($1,$2)d$1} dey = [* [ffooo fx.x,(z, 2 — U)dl‘] dv,
where fx, x, (21, x2) is the joint probability density function ak; and X,. SinceX; and X, are
independent random variablesy (v) = [ {f_oooo Ix, (@) fx, (x — U)dx] dv. Let the probability

density function befy (v), we have

)= [~ @t ods ®
2) Square Distribution: With S = V2, Fg(s) = P(V2 < s) = P(—/s < V < /5) =
Y55 fv(w)dv = By (v/5) — Fy/(—V/5), then

fv(Vs) + fv(=+/s)
NE '

3) Sum Distribution:With Z = Sx + Sy, following the same approach Difference Distribu-

fs(s) = F§(s) = (2)

tion, Fz(z) = P(Sx + Sy <z2) = [~ [ff‘;o fsy.sy (%, 2 — x)dz| dz. The following convolution
is used to obtairf;(z):

fz(z) = /00 fsy (@) fs, (2 — x)dx. 3)

4) Square-Root DistributionFinally let D = 1/Z, the distance distributiofiy (d) can be derived
by
fp(d) = Fz(d*) = 2dfz(d?). (4)

[11. DISTANCE DISTRIBUTION WITH UNIFORM SIZE

In the network topology described in Fig. 1, data can be tratetnin three cases: between
nodes inside the same grid, between nodes in diagonallgedjarids, and nodes in vertically
or horizontally adjacent grids. In most literature, averatistance is used, instead of distance
distribution, which is more accurate according to simolatiesults in the next section. We derive

the distance distribution in these three cases.
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Fig. 2. Random Points Within a Grid.

A. Two Random Points Within a Grid

Consider a rectangle with the length of the sidesndb, and supposé(x1,y1) and Q(x2, y2)
are two random points that uniformly distributed in thistesgle area, as in Fig. 2. Then the
cordinates ofP and( are random variables that follow uniform distribution:, z2 ~ U|0, a] and
y1,y2 ~ U[0,b]. Let vy = x1 — x9, v2 = y1 — y2. The probability density function can be easily

computed by introducingelta functiond(x) [2] and Heaviside step functiof (x) [3]:
= [ o (F7EE0) daay ©)
o Jo a

fv(v) = (v+a)H(U+a)+(v;;1)H(v—a)—2vH(v)

Therefore,

and
(v+b)H(v+b)+(v—b)H (v—b)—2vH (v) (6)
fv.(v) = be

In simpified form,

fV1 (?}) _ vta—2vH(v) and

a?

(o) = 20

51 = v% = (11 — x9)?, 59 = U% = (y1 — y2)? has pdf:

fo,(s) = HOAtO=HG/sa) | H/sta) b H(vE-o) 2H(/3)
fop(s) = LA | HEO PG5 -b) -2 (V)

and




In simpified form,

fs.(s) = 75 + 2 and
fou(s) = o + g

Computing the density function af = s; + s, is actually doing this convolution (to get the pdf

of d = \/z is therefore simplyf(d) = 2dfz(d?)):

h@%=[%ﬁ$@ﬁ$@—wwx )

Mathai [4] has done impresive work in geometrical prob&piWith slight modification of his

equation(2.4.9), we can get the pdf in terms of node distance, iles /z:

@r _(a+b)d+ L 0 < d < min{a,b}

absinil(mm(ga’b}) — mm{;’b}Q — max{a,b}d

+mazx{a,b}+/d? — min{a, b}? min{a,b} < d < maz{a,b}

4d ) ab Sinl(mi”fl“’b})—sml\/W]

) =
+min{a,b}\/d> — max{a, b}?
+mazx{a,b}+/d? — min{a, b}? mazx{a,b} < d < Va?+b?
e @
2 p)
0 otherwise
(8)

B. Two Random Points in Diagonal Grids (Uniform Size)

We first consider simple cases where grid size is the same. InFigy, y1 ~ UJ0, s, x2,y2 ~
U[-s, 0], therefore bothw; = z; — 29 andve = y; — y2 have the same distribution (simpified

form):

fo(v) = v—2(v —;)H(v —5) ©)

Let a = v2, therefore,



Fig. 3. Random Points in Diagonal Grids (Uniform Size).

2(s— ya)—1 _ H(/a—s)
252 + sva (10)

The same as equation (7), doing convolutipn>> fa(z)fa(z — xz)dz, then apply f(d) =
2dfa(d?):

fa(a) =

2
& 0<d<s
U315 <d</2s

2

a2 _ g2 2 2 _g2
od | 2tan ' St i+ E 4V 1 V25 <d <2

fd) = 2 2 . - (11)
2tan_182d2782+%—4vd;8 +3 25 < d < +/5s
q 4s2-2 VE—SZ P
2tan 25\/112_4824-2 — — A — Vbs < d < +/8s
0 otherwise

C. Two Random Points in Parallel Grids (Uniform Size)

In Fig. 4, P and @ are in two vertically or horizontally adjacent grids. Thenef, =, y1, y2 ~
U(0,s), andxy ~ U(—s,0). In this case the pdf of; = z1 —z2 andvy = y; — yo follow different

distributions according to equations 9 and llI-A respeativ

fVl (’U) _ v—2(v—§2)H(v—s) and
12
fV (U) _ v+s—2vH (v) ( )

52
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Fig. 4. Random Points in Parallel Grids (Uniform Size).

The square ofy andv,:

fAl (CL) — 2H(S;S\2/a)—1 + H(S\/:;E—S) and

ng(a) = s\l/a %2(\/5’)

By doing the same convolution process the following is pdf):

.
% _ % 0<d<s
tan 1B L & 9V 4 85 < d < V2

2
2d
f(d) = 55 4 ton ™ SEE - 2V S g V2s <d <2
2
_ 42 1 L8 | JEIEEE &5
tan™! 5 —tan Tl e  YESEEEEEE - 5 =5 25 <d < Vbs
0 otherwise
(13)

D. Simulation Results

The above derivation is flexible enough to be scaled and appiieall other grid sizes and
non-uniform grid size. Figure 5 shows the comparison betwieerCDF of distance distribution in
two routing schemes (diagonal-first routing and Manhattalk)vand the actual simulation result.
In the simulation, both of the routings use unit grid size.c&s be observed from the figure, the
CDFs and simulation results match very closely.

Figure 6(a) and (b) show the comparison of two routing schemes, using averagjarie and
distance distribution respectively. The distance distiifmumatches simulation results accurately,

while using average distance, the difference between sisatyodel and simulation becomes much



Cumulative Distribution Function

14 T T T
Diagonal CDF
1.2F + Diagonal Simulation ]
— — — Manhattan CDF
1) *  Manhattan Simulation i
0.8 R
£
w
0.6 R
0.4r B
7
0.2 ¥ 1
o
¥
0 Lt ‘ s s s
0 0.5 1 15 2 25 3

distance x

Fig. 5. Cumulative Distribution Function.

larger as the path-loss exponentbecomes bigger. Therefore, although computing pdf is much

more difficult, the resulting model characterizes the re&lvoek better.
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Fig. 6. Diagonal-first Routing and Manhattan Walk.



IV. DISTANCE DISTRIBUTION WITH VARIABLE SIZE

As described in section |, using variable grid size will hefmserve more energy and prolong
network lifetime. In this section we discuss two cases, aliadand parallel. The distribution results
in the case where nodes are located in a single grid in selitidncan still be applied since the

length of of the sides can be scaled arbitrarily.

A. Two Random Points in Diagonal Grids (Variable Size)

P(x1,y1)

Q(x2,y2

Fig. 7. Two Random Points in Diagonal Grids (Variable Size).

Assume the ratio between the length of the sides of two diagomdjacent grids is;. In

figure 7,21,y1 ~ UJ0, s] andzy, y2 ~ U[—sgq, 0]. The difference distributiom = z; — x5:

(v—sq)H(sq—v)+(v—98)H(s—v)+(1+¢q)s—v
s2q

fv(v) = (14)

The product distribution = v?:

(Va—sq)H(sq — Va)+ (Va—s)H(s — Va) + (1 + ¢)s — Va (15)
2s%qv/a

Depending on the value @f the convolution will get different overlapping range. Tihddwing

fa(a) =

is an example wheg2—1 < ¢ < % (other ranges of include0 < ¢ < @ @ <qg<vV2-1

and% <qg<1):



25%2 0<d<sq
e su<d< Vs
tan™! Sq;% + 5 (d —\/d? — 32q2> V2sqg<d<s

tan_lsqiﬁ_?s_:q <1+qd g/ d? — s2q )
£ -5 s<d<+\/1+¢%

T2 g
2 2 d2 2 2
1 -1_5—S —-1_5 54
21+q d—\/d? — s2¢2 2vd2_52+1 V1+q?2 <d<+2s
g [, 1 L-s R s
7 |tan " Jp=s T atan sq\/m]
d L
f(d):;2 +21;1'§(d—\/d2—52q2—\/d2—52) V25 <d < (1+q)s
g [, 1 % 1S
= |tan o=t (gtan m} (14+q)s<d<

2L (B R@ 4 B = ) 4 pL 4ol @+ (1+q)7%

149 |an—1_5=5 RO LY s

q° _tan svV/d2—s? t (qtan s(14q)\/d?—s2(1+q)?

+2 [q d2—32(1+Q)2_(1+Q)m] ¢+ (1+q)Ps<d
toSz+ & <Vi+(1+4q)%s
(U4e?, 1 s0+e*-% p %6 <
L1+ s — 2/ = 2T+ ) < V2(1+g)s
0 otherwise

(16)

B. Two Random Points in Parallel Grids (Variable Size)

Because of the grid structure in Fig. 1, in figure 8 the ratio leetw. andb is 1(1;‘1 This is the
most complicated case, whesg ~ U|[0,a] ~ U {0, %b} xg ~ Ul—aq,0] ~ U[—(1 — ¢)b,0],
y1 ~ UJ0,b] andys ~ UJ0, bg|. Therefore,

qlv—(1=q)b] H[(1-q)b—v]+q(1=q)bt+q| S 2b—v| H [v—*_1b
fV1( ) (1—¢)%b? [ ] [ ] and

fre(v) = erbq*”H(”)Jr[(1gzqq)b*vh‘ﬂ%(l—q)b]

(17)
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Fig. 8. Two Random Points in Parallel Grids (Variable Size).

The product distributiors; = v% is thus:

(V5 = a(1 = @b H[(1— )b — v/5] +a(1 = )b+ [(1 — q)b — a/5] H [/ — (152) o]

. q
fs.(s) = 21— q)202\/5
(18)
[(1—=q)b— /s H[\/s—(1—q)b]
1 +qb+ (gb — v/s)H(gb — /s) 0<g<3
[Vs—=(1—=qblH[(1—-q)b—+s]+b—+/s
+(gb— V5)H(gb — /5)) ;<a<l
i.e., wheng < 1,
%ﬁ_2;2q 0§S§b2q2
# b2q2 S s S (1 o q)QbQ
fas)={ *°
2bql\/§—%2q (1—q)%b? < s < b
0 otherwise
Wheng > 1,
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‘ -

— 0<s<(1-q)%?

bs  2b%q
14¢ 1 212 2,2
2bqy/s  b%q (1_Q)b§5§bq

fsz(s) =

1 1 2.2 2
20q/s  2b%g bqgsgb

\ 0 otherwise

Sice this is too complicated to derive the pdf, especiallydonvolution in ste@), we use the

approximate distance distribution in the next section.

C. Two Random Points in Parallel Grids (Approximate Distandstilibution)

Since derivation of exact pdf is too complicated, we appratérthe actual distance distribution
in parallel case as from an outside ring to an inside ring in Eiga). Recall in Fig. 1 (b) nodes
in parallel rectangle® and4, e.g., R, its coordinate distribution can be formulated as

frofe) = Bt

; (20)
fo () = AR
and for S:
_ H(z+q)—H(z+q(1—q))
e T T

ie., X; ~U[—¢0], Y1 ~U[0,1 —¢], and Xy ~ U[—¢q, —q(1 — q)], Y2 ~ U[—q(1 — q),0]. As

shown in Fig. 9 (after normalizing to unit size as in Fig. 1). ®iere,

fu(v) = *vH(v)+[q(lfq);v}H[q(lfq)*qu and

(22)
v—q(1—q)|H[q(1—q)—v]+[v—(1—g)|H[(1—q)—v]+(1—q)(14+q)—v
fun(v) = [v—q(1—q)|H[g(1—q)—v]+][ q((l_g)); [(1=q)—v]+(1—-¢)(1+q)
Product distributions; = v? ands, = v2 are:
Vs =@ H[Vs—¢*] +q—/s
1 +q(2¢ — 1)H [q(1 — q) — /3] 0<q<l
fs.(s) = (23)

245 [q(1—q) = Vs|H[Vs—q(1—q)]+q—+/s

+q(2¢ — 1) H(¢* — /5)

N[
IN
LS
AN
[S—
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Fig. 9. Two Random Points in Parallel Grids.

i 1
i.e., wheng < 3,

.
qxl/E_T(lf’ 0<s<gq
1 4<S< 2(1_ )2
2qv/s 7 =>5>4 q
fsi(s) = e
qul\/g_gés q2(1_Q)2§5§q2
0 otherwise
Wheng > 1,
o 0<s<d(1l-g)
i~ Pl-9?<s<d
fsz2(s) = X X
2(]2\/5_@ q4§S§q2
{ 0 otherwise
fs(s):[\/E—Q(l—Q)]H[Q(l—Q)—\/ﬂ+[\/§—(1—Q)JH[(1—Q)—x/ﬂ+(1—Q)(1+Q)—\/5

2q(1 —q)%/s o
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.
Qq(ll,qf)z 0<s< q2(1 — q)2
1 2 2 2
2A—0Ts *(1-¢)*<s<(1-9q)
fs.ls) = | :L)\[ 1 2 2 2
i-gvs ~ mi-gr (19 <5< (1= (1+9)
0 otherwise

As the diagonal case, parallel distribution also dependthervalue ofg. The following is an

example when1 —

1
%)

1<g<2-v2,2-v2<q< Y5 Sl <y < Land L <g <),

V2 V2

2d? d3

?(1-¢?)  2¢*(1—q)?

d? d

d )Sin_l (d2_2qs2(1_Q)2> +

F-@ T 20—q)°

d _ 2 _ _
q(1—q a*(1—q)? {d @ — (1 Q)Q]

(1—q)md+qd

+ 2q(1—q)?

d .1 (d*>—2¢*(1—q)? .1 (d*—2q* d°
24(1—=q) [Sm (7& o & )] T 2 (1=

+ i [qd—q  —¢*(1—q)* + (1 —q)\/dz—q‘*}

qrd—(1—q)d
T 3(i—g)

s [0 (£225850) gt (250)]

+ﬁ[qd_(2—® P —P(1—q+(1-q) d2—q4]

wd d
T o= T 2@

L d2—202(1—a)? . 2_ o4
s -0 (S5 < (458

+ i (- VP = ¢ = 2 - /P = (1 - g

ds nd (®—2¢+2)d g2
+ 2¢*(1—q)? + 2q(1—q) + 2¢2(1—q)? *(1—q)

<qg< ? (other ranges of; include0 < ¢ <1 —

1L V2 1
717§Q§§;

2

/(1 —q)?+¢><d<+2¢(1-q)

V2q(1 - q)

IN
SH
IA

<

g<d<qy/(1—-¢q)?+1

(25)



(continue)

o [(1 — q)sin”! (7612‘2‘1;2(1‘(1)2) — gsin (d2;§q4)}
+ sasae [\/dQ—q4+\/d2—q2—d— d2—q2(1—q)2}
s (FF0) + mtt
- [ (1— g)sin~ (7‘12*2‘16151*‘1)2) + 250t (L2200
o (532) o ()
+ i (V& =@+ VP = = B =1 ]
g |(1= )+ 263 /@ = (1= )]

(1+q)7rd
+ gti=gr t apteg tan

e [ (250 i ()

s s (52 0 i (452)]

fld) =
— sty (1= VP — @0 — a7 + a/@ — (1 - g’
14+q)md
(1J{q q) <\/d2 —C Vo ) + Q(QQjL(({)—Q) - 2(1iq)2

s [0~ (250 (=)
— gt [sin ™t (FF2) + (L4 g)sin™? (dzgfq“)]
+ W [ OV — g2 —\/d?— (1 - }

1+q [\/d2 @ — B — @1 —q)2 - d}

i(1-9)

d3 (1+Q)7Td (1-2¢4+2¢>—2¢°)d
+ 2¢*(1—q)? + q*(1—q) + 2¢*(1—q)?

(1+q)d {(1 — q)sin~1 (W) —gsin™! (%)}

2¢*(1—q)
1J{qq) [\/d2 Cr VB — - @1 q)F d}
A+qd . —1 (d®—2¢° (1—¢*)md—2qd
T a@(1g) M ( dz ) + 2¢2(1—q)2

14

1-@?+¢'<d<(1-gg@+1

(1-¢2+@<d<(1-¢%
(26)
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(continue)

A7 - pint (£20507) — i (2320
it o (55) o ()

1ng 4 [\/d2 B @I qR+ B q4]

43 dy/d?*—(1—q)?(1+q)? 142¢%—2¢*+1)d
T 2¢%(1—q)? 2(1—q)? _ L 2;1(1_3)2 ) (1 - q2) <d< (1 - q2)2 + q4
d . d2—202(1—q)? L 2_ 5.2
i o (25) (58]
_ .1 (d®P—2(1—¢)*(14q)* 2—q)d
J(d) = fz( )>Sm () -
1

= [\/d2 qz—\/dQ—(J?(l—Q)z}

d d2—( —q)?(1+¢)?

R B I-¢)P+¢'<d<(1-9v{1+q?*+¢
2§£(+1q_)i) [Sm_l (2(17q)2(6112+q)27d2) _sin-1 (dzng)}
+ WELEO | AR DR (1) T+ + 2 <d < V(T — @2+
0 otherwise
(27)
V. WIRELESSCHANNEL & T RAFFIC MODEL
A. Energy Consumption Between Transceivers
According to [6], the energy consumed by radio transmitser i
Brx= e [ a*fp(a)d. (28)

where\ is the data transmission ratejs a constant related to the environment, ant the path
loss exponent with values fromto 6. The exact form offp(z) is the pdf of either diagonal or

parallel distance distribution.

B. Accumulated Many-To-One Traffic

In wireless sensor networks, each sensor generates dataast & bits/second. The data is
transmitted from the source node to its cluster head, whem tforwards the data to the sink

through other cluster heads. This multi-hop forwarding $etdthe many-to-one traffic pattern: in
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Fig. 1 (a), the cluster heads in théh ring receive both the traffic originating from its own dieits
as well as the traffic relayed from tHe — 1)-th ring, then they forward the combined traffic to

the cluster heads in th@ + 1)-th ring.

C. Energy Optimization

Let E; be the total communication energy used by cluster headseigttn ring, then

E; = Mi(ERe + Ete) + MiE1x (29)

where )\; is the data rate passing through thth ring, including the data rate from the sensors
to their corresponding cluster heads, and the data rateeketeluster heads in neighboring rings.
Here we assume the data generated by cluster heads iirttheng is part of the traffic that
realyed through thé-th ring. Egr. and Er. are the energy consumed by transceiver circuitry. So
the first half of (29) is the energy consumed by electricalutiravhile the second half is for radio

communication. According to [5], we havég, = E1. = F., then E; is given by

E;, = )\i(ZEe + ETX) (30)

A; is essentially the bit rate of aggregate traffic that origiedtom the grids in the most outside
ring, through thei-th ring. Since the sensing field is symetric, the aggregatéal cin be divided
into two categories as in Fig. 1 (a): between parallel redenp both the upper and lower half
of the field (\;,), and between diagonal squares in a “straight ling7) i.e., \; = 2\, + Aig.
Suppose the node density gsthen

A? i
Aip = 17o(1— ) pA

2 . (31)
Nia = 21— ¢%)pA
Therefore,
E;, = 2)\1‘}3 <2Ee + E/xo‘fDP (x)diﬂ)
+)\id <2Ee —+ 6/‘ ZafDD (x)dx) . (32)

To minimize the total network energy consumption, we forabellthe problem as
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min YK E
st. ATl > (33)

AgK <=rg
whererq is the minimal distance between wireless transceivers fus the maximum number
of hops from the source node to the sink.

Meanwhile, the maximization of network lifetime is equizat to the following formulation:

min max; F; (34)

wherei = 1...K?2, so E; is calculated for each grid.

VI. SIMULATION WITH VARIABLE GRID SIZE

1) Channel Propagation Modeln the simulation experiment, both free space model andimult
path fading model were used, depending on the distance bptivee transmitter and receiver.
According to [5], if this distance is less than a certain sroser distancel., then the Friis free
space model is used; otherwise the two-ray ground propagafil be applied insteadi. is defined

as:

_ AmV/Lhhy

de
A

(35)

where I > 1 is the system loss factoh,. and h; are the height of receiver/transmitter antenna,
and X is the wavelength of the carrier signal.

Then energy consumption between two transceivers withraisté will be:

6FriisAdz d < d.
Er, =
6twofray)\d4 d>d,.

where ) is the radio bitrate.
[5] defines how to calculate the values of coefficiets;;; and e;,o—rqy. IN OUr Simulation,

we used the following parameters; = h, = 0.6 m, no system lossI{ = 1), 2.4 GHz radio
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frequency, and\ = ;2% = 0.125 m. Plugging these into equation 3%, = 36.2 m.
2) PDF and Polynormial Fitting: Figure 10 shows the probability distribution functions and
their polynormial fitting in the case where both Diagonal-Faisd Manhattan Walk has a grid size

ratio of 0.5. From the figure it is clear that normal distribution can not bgoad approximation.

T T T T
1.2+ DF distribution ||
T — - — - DF fitting
I — — — MW distribution
r — + — MW fitting
0.8} J
)
a
< 0.6} J
0.4} |
0.2} J
0 i
0 0.5 1 1.5 2

Fig. 10. Simulation With Variable Grid Size.

A. Distance Verification

Due to space limit, we only present the verification of distaddstribution for diagonal grids.
We generated, 000 pairs of random points. Figure 11 shows the cumulative distion function
and simulation result wheq = 0.4 andg = 0.7. The simulation and distribution function match
each other quite well, with only slight deviation. This valids the accuracy of our derivation and
energy consumption model. The dashed lines in Fig. 11 araldison average (where the value
of CDF is 0.5) while the dotted lines are the min-max average. The difie@doetween them is

innegligible, especially when path loss coefficient getdaig

*According to IEEE802.15.4 specification, ZigBee operates in the industrial, scientific and medical )(ISblio

bands;868 M Hz in Europe,915 M Hz in the USA and Australia, and.4 GHz in most jurisdictions worldwide.
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Fig. 11. Numerical and Simulation Results For Distance Distribution.
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Fig. 12. Total Network Energy Consumption.
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Fig. 13. Per-Grid Energy Consumption with Nonuniform Griding.

As in Fig. 12, the energy consumption model using distandeilolision matches the simulation
results with high accuracy, while the model using averaggendistance largely underestimates
the real value. There also exists an optimal size rathetween0.3 and 0.5, that minimizes the
total network energy consumption.

Figure 13 shows the effect of energy balancing of nonuniforidirgg. The energy consumption
per grid is sorted in the descending order for each grid. Goagpwith the results from uniform
griding, it is obvious that nonuniform griding with a propgnid size ratio can reduce the maximum
energy consumption, thus balancing the overall energyiloigion. According to the value af in

the figure, network energy is more balanced wheagr betweer).3 and0.5.
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