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I. OPPORTUNISTICGRIDING

Data traffic in sensor networks follows many-to-one pattern,ussally the area close to the sink

is always crowded if uniform grid is used [1].Opportunistic gridingis therefore advantageous in

smoothing energy distribution. Grids close to the sink, which have heavier traffic load, will have a

smaller size compared with those are farther away, such thata shorter transmission range is used.

Sensors that are far away have less traffic, but have to transmitover longer distance. This method

will intuitively balance out the uneven traffic distributiondue to geometric location, and thus make

network lifetime much longer.
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Fig. 1. Opportunistic Griding with Size Ratioq.

In Fig. 1 (a), the area of the entire sensing field isA2. Sink node locates at the lower left corner,

and the field is recursively divided with size ratioq. Notice that if the sink node is located at an

arbitrary position, this network division can be repeated in four different quadrants with sink node

as the origin. Without loss of generality, we normalize theA × A sensing field to a unit square

as in Fig. 1 (b). With a grid-based clustering scheme, there are three possible cases of transceiver

locations for a wireless transmission: between a cluster node and the grid head within the same

grid; between two grid heads of neighbor grids, where the grids can be diagonal (PQ in grid 1

and3) or parallel (RS in grid 2 and4) to each other. In the following sections, we first deal with

distance distribution with uniform size, i.e., uniform griding, then derive the more complicated

cases with the size ratio ofq.
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II. D ISTANCE DISTRIBUTIONS

As long as the coordinate distributions of two nodes are obtained, we can get the distance

distribution according to its definition, i.e.,P (D ≤ d) whereD =
√

(X1 − X2)2 + (Y1 − Y2)2.

Let V = X1 − X2 (or Y1 − Y2), S = V 2, Z = SX + SY and D =
√

Z, our goal is to obtain

fD(d), i.e., the distance probability density function of the twocases described above.

1) Difference Distribution:With V = X1 − X2, the cumulative distribution function ofV is

FV (v) = P (X1−X2 ≤ v) =
∫ ∞
x1−v

[

∫ ∞
−∞ fX1,X2

(x1, x2)dx1

]

dx2 =
∫ v

−∞

[

∫ ∞
−∞ fX1,X2

(x, x − v)dx
]

dv,

wherefX1,X2
(x1, x2) is the joint probability density function ofX1 andX2. SinceX1 andX2 are

independent random variables,FV (v) =
∫ v

−∞

[

∫ ∞
−∞ fX1

(x)fX2
(x − v)dx

]

dv. Let the probability

density function befV (v), we have

fV (v) =

∫ ∞

−∞
fX1

(x)fX2
(x − v)dx. (1)

2) Square Distribution: With S = V 2, FS(s) = P (V 2 ≤ s) = P (−√
s ≤ V ≤ √

s) =
∫

√
s

−√
s
fV (v)dv = FV (

√
s) − FV (−√

s), then

fS(s) = F ′
S(s) =

fV (
√

s) + fV (−√
s)

2
√

s
. (2)

3) Sum Distribution:With Z = SX + SY , following the same approach inDifference Distribu-

tion, FZ(z) = P (SX + SY ≤ z) =
∫ z

−∞

[

∫ ∞
−∞ fSX ,SY

(x, z − x)dx
]

dz. The following convolution

is used to obtainfZ(z):

fZ(z) =

∫ ∞

−∞
fSX

(x)fSY
(z − x)dx. (3)

4) Square-Root Distribution:Finally letD =
√

Z, the distance distributionfD(d) can be derived

by

fD(d) = F ′
Z(d2) = 2dfZ(d2). (4)

III. D ISTANCE DISTRIBUTION WITH UNIFORM SIZE

In the network topology described in Fig. 1, data can be transmitted in three cases: between

nodes inside the same grid, between nodes in diagonally adjacent grids, and nodes in vertically

or horizontally adjacent grids. In most literature, average distance is used, instead of distance

distribution, which is more accurate according to simulation results in the next section. We derive

the distance distribution in these three cases.
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Fig. 2. Random Points Within a Grid.

A. Two Random Points Within a Grid

Consider a rectangle with the length of the sidesa andb, and supposeP (x1, y1) andQ(x2, y2)

are two random points that uniformly distributed in this rectangle area, as in Fig. 2. Then the

cordinates ofP andQ are random variables that follow uniform distribution:x1, x2 ∼ U [0, a] and

y1, y2 ∼ U [0, b]. Let v1 = x1 − x2, v2 = y1 − y2. The probability density function can be easily

computed by introducingdelta functionδ(x) [2] and Heaviside step functionH(x) [3]:

fV (v) =

∫ a

0

∫ a

0
δ

(

x − y − v

a

)

dxdy (5)

Therefore,

fV1
(v) = (v+a)H(v+a)+(v−a)H(v−a)−2vH(v)

a2 and

fV2
(v) = (v+b)H(v+b)+(v−b)H(v−b)−2vH(v)

b2

(6)

In simpified form,

fV1
(v) = v+a−2vH(v)

a2 and

fV2
(v) = v+b−2vH(v)

b2

s1 = v2
1 = (x1 − x2)

2, s2 = v2
2 = (y1 − y2)

2 has pdf:

fS1
(s) = H(

√
s+a)−H(

√
s−a)

a
√

s
+ H(

√
s+a)+H(

√
s−a)−2H(

√
s)

a2 and

fS2
(s) = H(

√
s+b)−H(

√
s−b)

b
√

s
+ H(

√
s+b)+H(

√
s−b)−2H(

√
s)

b2
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In simpified form,

fS1
(s) = 1

a
√

s
+ 1−2H(

√
s)

a2 and

fS2
(s) = 1

b
√

s
+ 1−2H(

√
s)

b2

Computing the density function ofz = s1 + s2 is actually doing this convolution (to get the pdf

of d =
√

z is therefore simplyf(d) = 2dfZ(d2)):

fZ(z) =

∫ ∞

−∞
fS1

(x)fS2
(z − x)dx (7)

Mathai [4] has done impresive work in geometrical probability. With slight modification of his

equation(2.4.9), we can get the pdf in terms of node distance, i.e.,d =
√

z:

f(d) =
4d

a2b2







































































































abπ
2 − (a + b)d + d2

2 0 ≤ d ≤ min{a, b}

absin−1(min{a,b}
d

) − min{a,b}2

2 − max{a, b}d

+max{a, b}
√

d2 − min{a, b}2 min{a, b} ≤ d ≤ max{a, b}

ab

[

sin−1(min{a,b}
d

) − sin−1
√

1 − max{a,b}2

d2

]

+min{a, b}
√

d2 − max{a, b}2

+max{a, b}
√

d2 − min{a, b}2 max{a, b} ≤ d ≤
√

a2 + b2

−a2+b2

2 − d2

2

0 otherwise

(8)

B. Two Random Points in Diagonal Grids (Uniform Size)

We first consider simple cases where grid size is the same. In Fig. 3, x1, y1 ∼ U [0, s], x2, y2 ∼
U [−s, 0], therefore bothv1 = x1 − x2 and v2 = y1 − y2 have the same distribution (simpified

form):

fV (v) =
v − 2(v − s)H(v − s)

s2
(9)

Let a = v2, therefore,
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Fig. 3. Random Points in Diagonal Grids (Uniform Size).

fA(a) =
2H(s −√

a) − 1

2s2
+

H(
√

a − s)

s
√

a
(10)

The same as equation (7), doing convolution
∫ −∞
−∞ fA(x)fA(z − x)dx, then applyf(d) =

2dfA(d2):

f(d) =
2d

s2







































































d2

4s2 0 ≤ d ≤ s

2d
s
− 3d2

4s2 − 1s ≤ d ≤
√

2s

2tan−1
d2

2
−s2

s
√

d2−s2
+ d2

4s2 + 2d
s
− 4

√
d2−s2

s
+ 1

√
2s ≤ d ≤ 2s

2tan−1
d2

2
−s2

s
√

d2−s2
+ 3d2

4s2 − 4
√

d2−s2

s
+ 3 2s ≤ d ≤

√
5s

2tan−1 4s2− d2

2

2s
√

d2−4s2
+ 2

√
d2−s2

s
− d2

4s2 − 2
√

5s ≤ d ≤
√

8s

0 otherwise

(11)

C. Two Random Points in Parallel Grids (Uniform Size)

In Fig. 4, P andQ are in two vertically or horizontally adjacent grids. Therefore, x1, y1, y2 ∼
U(0, s), andx2 ∼ U(−s, 0). In this case the pdf ofv1 = x1−x2 andv2 = y1−y2 follow different

distributions according to equations 9 and III-A respectively:

fV1
(v) = v−2(v−s)H(v−s)

s2 and

fV2
(v) = v+s−2vH(v)

s2

(12)
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Fig. 4. Random Points in Parallel Grids (Uniform Size).

The square ofv1 andv2:

fA1
(a) = 2H(s−√

a)−1
2s2 + H(

√
a−s)

s
√

a
and

fA2
(a) = 1

s
√

a
+ 1−2H(

√
a)

s2

By doing the same convolution process the following is pdff(d):

f(d) =
2d

s2























































d
s
− d2

2s2 0 ≤ d ≤ s

tan−1 s
√

d2−s2

s2− d2

2

+ d2

s2 − 2d+
√

d2−s2

s
+ 3

2s ≤ d ≤
√

2s

tan−1 s
√

d2−s2

d2

2
−s2

− 2d+
√

d2−s2

s
− 1

2

√
2s ≤ d ≤ 2s

tan−1 4s2− d2

2

2s
√

d2−4s2
− tan−1

d2

2
−s2

s
√

d2−s2
+

√
d2−4s2+2

√
d2−s2

s
− d2

2s2 − 5
2 2s ≤ d ≤

√
5s

0 otherwise

(13)

D. Simulation Results

The above derivation is flexible enough to be scaled and appliedto all other grid sizes and

non-uniform grid size. Figure 5 shows the comparison betweenthe CDF of distance distribution in

two routing schemes (diagonal-first routing and Manhattan walk), and the actual simulation result.

In the simulation, both of the routings use unit grid size. Ascan be observed from the figure, the

CDFs and simulation results match very closely.

Figure 6(a) and (b) show the comparison of two routing schemes, using average distance and

distance distribution respectively. The distance distribution matches simulation results accurately,

while using average distance, the difference between analysis model and simulation becomes much
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larger as the path-loss exponentα becomes bigger. Therefore, although computing pdf is much

more difficult, the resulting model characterizes the real network better.
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Fig. 6. Diagonal-first Routing and Manhattan Walk.
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IV. D ISTANCE DISTRIBUTION WITH VARIABLE SIZE

As described in section I, using variable grid size will helpconserve more energy and prolong

network lifetime. In this section we discuss two cases, diagonal and parallel. The distribution results

in the case where nodes are located in a single grid in sectionIII-A can still be applied since the

length of of the sides can be scaled arbitrarily.

A. Two Random Points in Diagonal Grids (Variable Size)

x

y

s

s

−sq

−sq

P(x1,y1)

Q(x2,y2)

Fig. 7. Two Random Points in Diagonal Grids (Variable Size).

Assume the ratio between the length of the sides of two diagonally adjacent grids isq. In

figure 7,x1, y1 ∼ U [0, s] andx2, y2 ∼ U [−sq, 0]. The difference distributionv = x1 − x2:

fV (v) =
(v − sq)H(sq − v) + (v − s)H(s − v) + (1 + q)s − v

s2q
(14)

The product distributiona = v2:

fA(a) =
(
√

a − sq)H(sq −√
a) + (

√
a − s)H(s −√

a) + (1 + q)s −√
a

2s2q
√

a
(15)

Depending on the value ofq, the convolution will get different overlapping range. The following

is an example when
√

2−1 ≤ q ≤ 1√
2

(other ranges ofq include0 ≤ q ≤
√

3−1
2 ,

√
3−1
2 ≤ q ≤

√
2−1

and 1√
2
≤ q ≤ 1):
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f(d) =
d

s2



















































































































































































































































d2

2s2q2 0 ≤ d ≤ sq

2d
sq

− d2

2s2q2 − 1 sq ≤ d ≤
√

2sq

tan−1
d2

2
−s2q2

sq
√

d2−s2q2
+ 2

sq

(

d −
√

d2 − s2q2
) √

2sq ≤ d ≤ s

tan−1
d2

2
−s2q2

sq
√

d2−s2q2
+ 2

sq2

(

(1 + q)d − q
√

d2 − s2q2
)

− d2

s2q2 − 1
q2 s ≤ d ≤

√

1 + q2s

1
q

[

tan−1
d2

2
−s2

s
√

d2−s2
+ (1 + q)tan−1

d2

2
−s2q2

sq
√

d2−s2q2

]

+21+q
sq2 (d −

√

d2 − s2q2) − 2
√

d2−s2

sq
+ 1

√

1 + q2 ≤ d ≤
√

2s

1+q
q2

[

tan−1
d2

2
−s2

s
√

d2−s2
+ qtan−1

d2

2
−s2q2

sq
√

d2−s2q2

]

+21+q
sq2 (d −

√

d2 − s2q2 −
√

d2 − s2) + d2

2s2q2 + 1+q2

q2

√
2s ≤ d ≤ (1 + q)s

1+q
q2

[

tan−1
d2

2
−s2

s
√

d2−s2
+ (qtan−1

d2

2
−s2q2

sq
√

d2−s2q2

]

(1 + q)s ≤ d ≤

−21+q
sq2 (

√

d2 − s2q2 +
√

d2 − s2) + 3d2

2s2q2 + 21+q+q2

q2

√

q2 + (1 + q)2s

1+q
q2

[

tan−1
d2

2
−s2

s
√

d2−s2
+ (qtan−1 s2(1+q)2− d2

2

s(1+q)
√

d2−s2(1+q)2

]

+ 2
sq2

[

q
√

d2 − s2(1 + q)2 − (1 + q)
√

d2 − s2
]

√

q2 + (1 + q)2s ≤ d

+ d2

2s2q2 + 1
q2 ≤

√

1 + (1 + q)2s

(1+q)2

q2 tan−1 s2(1+q)2− d2

2

s(1+q)
√

d2−s2(1+q)2
− d2

2s2q2

√

1 + (1 + q)2s ≤ d

−1+q
sq2

[

(1 + q)s − 2
√

d2 − s2(1 + q)2
]

≤
√

2(1 + q)s

0 otherwise

(16)

B. Two Random Points in Parallel Grids (Variable Size)

Because of the grid structure in Fig. 1, in figure 8 the ratio betweena andb is 1−q
q

. This is the

most complicated case, wherex1 ∼ U [0, a] ∼ U
[

0, 1−q
q

b
]

, x2 ∼ U [−aq, 0] ∼ U [−(1 − q)b, 0],

y1 ∼ U [0, b] andy2 ∼ U [0, bq]. Therefore,

fV1
(v) =

q[v−(1−q)b]H[(1−q)b−v]+q(1−q)b+q
h

1−q

q
b−v

i

H
h

v− 1−q

q
b
i

(1−q)2b2 and

fV2
(v) = v+bq−vH(v)+[(1−q)b−v]H[v−(1−q)b]

b2q

(17)
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Fig. 8. Two Random Points in Parallel Grids (Variable Size).

The product distributions1 = v2
1 is thus:

fS1
(s) =

[
√

s − q(1 − q)b] H [(1 − q)b −√
s] + q(1 − q)b + [(1 − q)b − q

√
s] H

[√
s −

(

1−q
q

)

b
]

2(1 − q)2b2
√

s
(18)

fS2
(s) =

1

2b2q
√

s







































[(1 − q)b −√
s] H [

√
s − (1 − q)b]

+qb + (qb −√
s)H(qb −√

s) 0 < q ≤ 1
2

[
√

s − (1 − q)b] H [(1 − q)b −√
s] + b −√

s

+(qb −√
s)H(qb −√

s)) 1
2 ≤ q < 1

(19)

i.e., whenq ≤ 1
2 ,

fS1

2
(s) =







































1
b
√

s
− 1

2b2q
0 ≤ s ≤ b2q2

1
2b
√

s
b2q2 ≤ s ≤ (1 − q)2b2

1
2bq

√
s
− 1

2b2q
(1 − q)2b2 ≤ s ≤ b2

0 otherwise

Whenq ≥ 1
2 ,
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fS2

2
(s) =







































1
b
√

s
− 1

2b2q
0 ≤ s ≤ (1 − q)2b2

1+q

2bq
√

s
− 1

b2q
(1 − q)2b2 ≤ s ≤ b2q2

1
2bq

√
s
− 1

2b2q
b2q2 ≤ s ≤ b2

0 otherwise

Sice this is too complicated to derive the pdf, especially forconvolution in step3), we use the

approximate distance distribution in the next section.

C. Two Random Points in Parallel Grids (Approximate Distance Distribution)

Since derivation of exact pdf is too complicated, we approximate the actual distance distribution

in parallel case as from an outside ring to an inside ring in Fig. 1 (a). Recall in Fig. 1 (b) nodes

in parallel rectangles2 and4, e.g.,R, its coordinate distribution can be formulated as











fX1
(x) = H(x+q)−H(x)

q

fY1
(x) = H(x)−H[x−(1−q)]

1−q

, (20)

and forS:











fX2
(x) = H(x+q)−H(x+q(1−q))

q2

fY2
(x) = H[x+q(1−q)]−H(x)

q(1−q)

, (21)

i.e., X1 ∼ U [−q, 0], Y1 ∼ U [0, 1 − q], andX2 ∼ U [−q,−q(1 − q)], Y2 ∼ U [−q(1 − q), 0]. As

shown in Fig. 9 (after normalizing to unit size as in Fig. 1). Therefore,

fV1
(v) = −vH(v)+[q(1−q)+v]H[q(1−q)−v]+q

q3 and

fV2
(v) = [v−q(1−q)]H[q(1−q)−v]+[v−(1−q)]H[(1−q)−v]+(1−q)(1+q)−v

q(1−q)2

(22)

Product distributions1 = v2
1 ands2 = v2

2 are:

fS1
(s) =

1

2q3
√

s







































[√
s − q2

]

H
[√

s − q2
]

+ q −√
s

+q(2q − 1)H [q(1 − q) −√
s] 0 < q ≤ 1

2

[q(1 − q) −√
s] H [

√
s − q(1 − q)] + q −√

s

+q(2q − 1)H(q2 −√
s) 1

2 ≤ q < 1

(23)
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i.e., whenq ≤ 1
2 ,

fS1

1
(s) =







































1
q
√

s
− 1

2q3 0 ≤ s ≤ q4

1
2q

√
s

q4 ≤ s ≤ q2(1 − q)2

1
2q2

√
s
− 1

2q3 q2(1 − q)2 ≤ s ≤ q2

0 otherwise

Whenq ≥ 1
2 ,

fS2

1
(s) =







































1
q
√

s
− 1

2q3 0 ≤ s ≤ q2(1 − q)2

1+q

2q2
√

s
− 1

q3 q2(1 − q)2 ≤ s ≤ q4

1
2q2

√
s
− 1

2q3 q4 ≤ s ≤ q2

0 otherwise

fS2
(s) =

[
√

s − q(1 − q)] H [q(1 − q) −√
s] + [

√
s − (1 − q)] H [(1 − q) −√

s] + (1 − q)(1 + q) −√
s

2q(1 − q)2
√

s
(24)

i.e.,
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fS2
(s) =







































1
2q(1−q)2 0 ≤ s ≤ q2(1 − q)2

1
2(1−q)

√
s

q2(1 − q)2 ≤ s ≤ (1 − q)2

1+q

2q(1−q)
√

s
− 1

2q(1−q)2 (1 − q)2 ≤ s ≤ (1 − q)2(1 + q)2

0 otherwise

As the diagonal case, parallel distribution also depends onthe value ofq. The following is an

example when(1 − 1√
2
) ≤ q ≤

√
2

3 (other ranges ofq include 0 ≤ q ≤ 1 − 1√
2
,

√
2

3 ≤ q ≤ 1
2 ,

1
2 ≤ q ≤ 2 −

√
2, 2 −

√
2 ≤ q ≤

√
5−1
2 ,

√
5−1
2 ≤ q ≤ 1√

2
and 1√

2
≤ q ≤ 1):

f(d) =



















































































































































































2d2

q2(1−q2) −
d3

2q4(1−q)2 0 ≤ d ≤ q2

d2

q2(1−q2) + d
2(1−q)2 0 ≤ d ≤ q(1 − q)

d
q(1−q)sin

−1
(

d2−2q2(1−q)2

d2

)

+ d
q2(1−q)2

[

d − 2
√

d2 − q2(1 − q)2
]

+ (1−q)πd+qd

2q(1−q)2 q(1 − q) ≤ d ≤ q
√

(1 − q)2 + q2

d
2q(1−q)

[

sin−1
(

d2−2q2(1−q)2

d2

)

− sin−1
(

d2−2q4

d2

)]

− d3

2q4(1−q)2

+ d
q3(1−q)2

[

qd − q
√

d2 − q2(1 − q)2 + (1 − q)
√

d2 − q4
]

+ qπd−(1−q)d
2q2(1−q) q

√

(1 − q)2 + q2 ≤ d ≤
√

2q(1 − q)

d
2q2(1−q)

[

(2 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− qsin−1
(

d2−2q4

d2

)]

+ d
q3(1−q)2

[

qd − (2 − q)
√

d2 − q2(1 − q)2 + (1 − q)
√

d2 − q4
]

+ πd
2q(1−q) + d

2q2

√
2q(1 − q) ≤ d ≤ q

d
2q2(1−q)

[

(2 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− qsin−1
(

d2−2q4

d2

)]

+ d
q3(1−q)2

[

(1 − q)
√

d2 − q4 − (2 − q)
√

d2 − q2(1 − q)2
]

+ d3

2q4(1−q)2 + πd
2q(1−q) + (q2−2q+2)d

2q2(1−q)2 − d2

q3(1−q) q ≤ d ≤ q
√

(1 − q)2 + 1

(25)
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(continue)

f(d) =































































































































































































































































































d
2q2(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− qsin−1
(

d2−2q4

d2

)]

+ d
q3(1−q)2

[

√

d2 − q4 +
√

d2 − q2 − d −
√

d2 − q2(1 − q)2
]

− d
2q2(1−q)sin

−1
(

d2−2q2

d2

)

+ πd
2q(1−q) q

√

(1 − q)2 + 1 ≤ d ≤ (1 − q)

d
2q2(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

+ 2sin−1
(

d2−2(1−q)2

d2

)]

− d
2q2(1−q)

[

sin−1
(

d2−2q2

d2

)

+ qsin−1
(

d2−2q4

d2

)]

+ d
q3(1−q)

[

√

d2 − q2 +
√

d2 − q4 −
√

d2 − q2(1 − q)2
]

− d
q4(1−q)2

[

(1 − q2)d + 2q2
√

d2 − (1 − q)2
]

+ d3

2q4(1−q)2 + (1+q)πd

2q2(1−q) + d
2q4 (1 − q) ≤ d ≤

√

(1 − q)2 + q4

d
2q2(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

+ sin−1
(

d2−2(1−q)2

d2

)]

− d
2q2(1−q)

[

sin−1
(

d2−2q2

d2

)

+ (1 + q)sin−1
(

d2−2q4

d2

)]

− d
q3(1−q)2

[

(1 − q)
√

d2 − q2(1 − q)2 + q
√

d2 − (1 − q)2
]

+ (1+q)d
q4(1−q)

(

√

d2 − q2 +
√

d2 − q4 − d
)

+ (1+q)πd

2q2(1−q) −
d

2(1−q)2

√

(1 − q)2 + q4 ≤ d ≤ (1 − q)
√

q2 + 1

d
2q3(1−q)

[

(1 − q2)sin−1
(

d2−2q2(1−q)2

d2

)

+ sin−1
(

d2−2(1−q)2

d2

)]

− d
2q2(1−q)

[

sin−1
(

d2−2q2

d2

)

+ (1 + q)sin−1
(

d2−2q4

d2

)]

+ d
q3(1−q)2

[

(1 − q)
√

d2 − q2 −
√

d2 − (1 − q)2
]

+ (1+q)d
q4(1−q)

[

√

d2 − q4 −
√

d2 − q2(1 − q)2 − d
]

+ d3

2q4(1−q)2 + (1+q)πd

2q2(1−q) + (1−2q+2q2−2q3)d
2q4(1−q)2 (1 − q)

√

q2 + 1 ≤ d ≤
√

(1 − q)2 + q2

(1+q)d
2q3(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− qsin−1
(

d2−2q4

d2

)]

+ (1+q)d
q4(1−q)

[

√

d2 − q2 +
√

d2 − q4 −
√

d2 − q2(1 − q)2 − d
]

− (1+q)d
2q3(1−q)sin

−1
(

d2−2q2

d2

)

+ (1−q2)πd−2qd

2q2(1−q)2

√

(1 − q)2 + q2 ≤ d ≤ (1 − q2)

(26)
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(continue)

f(d) =



















































































































































(1+q)d
2q3(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− sin−1
(

d2−2q2

d2

)]

− (1+q)d
2q2(1−q)

[

sin−1
(

d2−2q4

d2

)

+ sin−1
(

d2−2(1−q2)2

d2

)]

+ (1+q)d
q4(1−q)

[

√

d2 − q2 −
√

d2 − q2(1 − q)2 +
√

d2 − q4
]

− d3

2q4(1−q)2 +
d
√

d2−(1−q)2(1+q)2

q2(1−q)2 − (q4+2q3−2q2+1)d
2q4(1−q)2 (1 − q2) ≤ d ≤

√

(1 − q2)2 + q4

(1+q)d
2q3(1−q)

[

(1 − q)sin−1
(

d2−2q2(1−q)2

d2

)

− sin−1
(

d2−2q2

d2

)]

− (1+q)d
2q2(1−q)sin

−1
(

d2−2(1−q)2(1+q)2

d2

)

− (2−q)d
2q(1−q)2

+ (1+q)d
q4(1−q)

[

√

d2 − q2 −
√

d2 − q2(1 − q)2
]

+
d
√

d2−(1−q)2(1+q)2

q2(1−q)2

√

(1 − q2)2 + q4 ≤ d ≤ (1 − q)
√

(1 + q)2 + q2

(1+q)d
2q3(1−q)

[

sin−1
(

2(1−q)2(1+q)2−d2

d2

)

− sin−1
(

d2−2q2

d2

)]

+
d
√

d2−(1−q)2(1+q)2

q3(1−q)2 + d(1+q)
√

d2−q2

q4(1−q) − (q4−q2+1)d+d3

2q4(1−q)2 (1 − q)
√

(1 + q)2 + q2 ≤ d ≤
√

(1 − q2)2 + q2

0 otherwise
(27)

V. W IRELESSCHANNEL & T RAFFIC MODEL

A. Energy Consumption Between Transceivers

According to [6], the energy consumed by radio transmitter is

ETx = λǫ

∫

xαfD(x)dx, (28)

whereλ is the data transmission rate,ǫ is a constant related to the environment, andα is the path

loss exponent with values from2 to 6. The exact form offD(x) is the pdf of either diagonal or

parallel distance distribution.

B. Accumulated Many-To-One Traffic

In wireless sensor networks, each sensor generates data at arate λ bits/second. The data is

transmitted from the source node to its cluster head, which then forwards the data to the sink

through other cluster heads. This multi-hop forwarding leads to the many-to-one traffic pattern: in
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Fig. 1 (a), the cluster heads in thei-th ring receive both the traffic originating from its own cluster,

as well as the traffic relayed from the(i − 1)-th ring, then they forward the combined traffic to

the cluster heads in the(i + 1)-th ring.

C. Energy Optimization

Let Ei be the total communication energy used by cluster heads in the i-th ring, then

Ei = λi(ERe + ETe) + λiETx (29)

whereλi is the data rate passing through thei-th ring, including the data rate from the sensors

to their corresponding cluster heads, and the data rate between cluster heads in neighboring rings.

Here we assume the data generated by cluster heads in thei-th ring is part of the traffic that

realyed through thei-th ring. ERe andETe are the energy consumed by transceiver circuitry. So

the first half of (29) is the energy consumed by electrical circuit, while the second half is for radio

communication. According to [5], we haveERe = ETe = Ee, thenEi is given by

Ei = λi(2Ee + ETx) (30)

λi is essentially the bit rate of aggregate traffic that originates from the grids in the most outside

ring, through thei-th ring. Since the sensing field is symetric, the aggregated data can be divided

into two categories as in Fig. 1 (a): between parallel rectangles in both the upper and lower half

of the field (λip), and between diagonal squares in a “straight line” (λid), i.e., λi = 2λip + λid.

Suppose the node density isρ, then











λip = A2q
1+q

(1 − q2i)ρλ

λid = A2(1−q)
1+q

(1 − q2i)ρλ

. (31)

Therefore,

Ei = 2λip

(

2Ee + ǫ

∫

xαfDP
(x)dx

)

+λid

(

2Ee + ǫ

∫

xαfDD
(x)dx

)

. (32)

To minimize the total network energy consumption, we formulate the problem as
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min
∑K

i=1 Ei

s.t. AqK−1 > r0

AqK <= r0

(33)

wherer0 is the minimal distance between wireless transceivers, thus K is the maximum number

of hops from the source node to the sink.

Meanwhile, the maximization of network lifetime is equivalent to the following formulation:

min maxi Ei (34)

wherei = 1...K2, so Ei is calculated for each grid.

VI. SIMULATION WITH VARIABLE GRID SIZE

1) Channel Propagation Model:In the simulation experiment, both free space model and multi-

path fading model were used, depending on the distance between the transmitter and receiver.

According to [5], if this distance is less than a certain cross-over distancedc, then the Friis free

space model is used; otherwise the two-ray ground propagation will be applied instead.dc is defined

as:

dc =
4π

√
Lhrht

λ
(35)

whereL ≥ 1 is the system loss factor,hr and ht are the height of receiver/transmitter antenna,

andλ is the wavelength of the carrier signal.

Then energy consumption between two transceivers with distanced will be:

ETx =











ǫFriisλd2 d ≤ dc

ǫtwo−rayλd4 d ≥ dc

whereλ is the radio bitrate.

[5] defines how to calculate the values of coefficientsǫFriis and ǫtwo−ray. In our simulation,

we used the following parameters:ht = hr = 0.6 m, no system loss (L = 1), 2.4 GHz radio
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frequency1, andλ = 3×108

2.4×109 = 0.125 m. Plugging these into equation 35,dc = 36.2 m.

2) PDF and Polynormial Fitting: Figure 10 shows the probability distribution functions and

their polynormial fitting in the case where both Diagonal-First and Manhattan Walk has a grid size

ratio of 0.5. From the figure it is clear that normal distribution can not be agood approximation.
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DF fitting
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Fig. 10. Simulation With Variable Grid Size.

A. Distance Verification

Due to space limit, we only present the verification of distance distribution for diagonal grids.

We generated1, 000 pairs of random points. Figure 11 shows the cumulative distribution function

and simulation result whenq = 0.4 and q = 0.7. The simulation and distribution function match

each other quite well, with only slight deviation. This validates the accuracy of our derivation and

energy consumption model. The dashed lines in Fig. 11 are distribution average (where the value

of CDF is 0.5) while the dotted lines are the min-max average. The difference between them is

innegligible, especially when path loss coefficient gets higher.

1According to IEEE802.15.4 specification, ZigBee operates in the industrial, scientific and medical (ISM) radio

bands;868 MHz in Europe,915 MHz in the USA and Australia, and2.4 GHz in most jurisdictions worldwide.
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Fig. 11. Numerical and Simulation Results For Distance Distribution.
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Fig. 12. Total Network Energy Consumption.
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Fig. 13. Per-Grid Energy Consumption with Nonuniform Griding.

As in Fig. 12, the energy consumption model using distance distribution matches the simulation

results with high accuracy, while the model using average node distance largely underestimates

the real value. There also exists an optimal size ratioq between0.3 and 0.5, that minimizes the

total network energy consumption.

Figure 13 shows the effect of energy balancing of nonuniform griding. The energy consumption

per grid is sorted in the descending order for each grid. Compared with the results from uniform

griding, it is obvious that nonuniform griding with a propergrid size ratio can reduce the maximum

energy consumption, thus balancing the overall energy distribution. According to the value ofq in

the figure, network energy is more balanced whenq is between0.3 and0.5.
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