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Abstract—Node locations and distances are of profound im-
portance for the operation of any communication networks.
With the fundamental inter-node distance captured in a random
network, one can build probabilistic models for characterizing
network performance metrics such as k-th nearest neighbor and
traveling distances, as well as transmission power and path loss in
wireless networks. For the first time in the literature, a unified
approach is developed to obtain the closed-form distributions
of inter-node distances associated with hexagons. This approach
can be degenerated to elementary geometries such as squares
and rectangles. By the formulation of a quadratic product, the
proposed approach can characterize general statistical distances
when node coordinates are interdependent. Hence, our approach
applies to both elementary and complex geometric topologies, and
the corresponding probabilistic distance models go beyond the
approximations and Monte Carlo simulations. Analytical models
based on hexagon distributions are applied to the analysis of the
nearest neighbor distribution in a sparse network for improving
energy efficiency, and the farthest neighbor distribution in a
dense network for minimizing routing overhead. Both the models
and simulations demonstrate the high accuracy and promising
potentials of this approach, whereas the current best approxi-
mations are not applicable in many scenarios. This geometrical
probability approach thus provides accurate information essen-
tial to the successful network protocol and system design.

Index Terms—Probabilistic distance distributions, geometric
models, rhombuses, hexagons

I. INTRODUCTION

In a spatially random network, e.g., a sensor network or

cellular system, wireless devices are typically distributed over

the network area according to a certain distribution. The

locations and Euclidean distances between randomly deployed

nodes are among the critical factors that determine the system

performance metrics. For instance, the k-th nearest neigh-

bor distance is crucial for relay and routing protocols [1];

stochastic mobility models are closely related to the trajectory

between random points [2]; energy consumption in sensor

networks [3], path loss, interference and capacity in wireless

communication networks [4], etc, are all dependent on the

location-critical random distances. The probabilistic models

based on a fundamental investigation of the distance distribu-

tions between random points [5], provide accurate statistical

information for protocol design and performance evaluation.

They have become the powerful, versatile tools which are built

upon the elegant theory of geometric probability, with a rich

mathematical background [6].

Traditional methods providing statistical moments, partic-

ularly mean and variance, have been long existing in the

literature. They give insights for empirical approximations and

Monte Carlo simulations. Although these methods have main-

tained the scale of problems at a tractable level, a nonlinear

relationship between location-critical performance metrics and

inter-node distances has made the performance metrics much

more complicated. Consequently, the numerical averages or

empirical distributions have become less accurate, which is

obvious from Jensen’s inequality. If D is a random variable

denoting inter-node distances, and ϕ(·) is a convex function

(which is the case for path loss in wireless communication net-

works), then ϕ (E [D]) ≤ E [ϕ(D)]. Therefore, the complex,

non-deterministic nature of random networks makes pertinent

a rigorous characterization of network performance metrics by

means of the closed-form distance distributions, which is one

of the contributions in this paper.

Previously, conducting distribution analysis on network per-

formance metrics has been intractable for complex network

geometries. Even for simple square and circular networks,

Monte Carlo simulations and empirical approximations have

been heavily used [8]. In this paper, we fill in the gap in the

literature by developing a unified approach which is able to

tackle a problem that has never been solved explicitly: the

closed-form distance distributions associated with hexagons,

a complex geometry commonly used in communication net-

works. The approach is unified in the sense that its degenerated

form gives the exact same results for squares and rectangles as

those in the classic geometric probability research. Moreover,

the explicit distributions gracefully eliminate the errors in em-

pirical methods. The novelty of this approach is twofold: first,

different from [4], [13] and [14], there is no fixed reference

point in the network; second, the coordinates of a node can be

interdependent, in contrast to the strong assumption on coor-

dinate independence in the literature [3], [5], [17], [18]. While

it is relatively easy to derive the distance distribution with a

fixed point in the network, the resultant geometrical probability

approach only applies to the communication between random

points and the fixed infrastructure. The results derived in this

paper enable the analytical models in a wider spectrum with

less location constraint.

The main contributions of this paper are as follows. First,

we develop a novel yet simple formulation, achieving a

unified approach to the closed-form node distance distribu-

tion functions. This formulation is a quadratic product of

conditional probability function, and the probability density

of node coordinates. Explicit distributions are given for both

elementary and complex geometries, such as squares, rhom-

buses and hexagons. The results not only are suitable for
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convex topologies, but also apply to the networks with concave

geometric shapes. Second, the rigorousness and accuracy of

the derived distributions have been verified through both math-

ematical validation and simulations. We also illustrate the use

of our probabilistic distance models in a computation-effective

manner with polynomial fitting. Third, we show by analytical

and simulation comparison that, in both sparse and dense

network scenarios, the state-of-the-art approximations are not

accurate when analyzing non-linear, location-critical network

performance metrics. In summary, the probabilistic distance

models presented in this paper bridge the gap between the

distribution of network performance metrics, and the explicit

distribution of random distances in complex geometries. The

analytical results are critical to the fine tuning of network

protocol parameters, and the accurate modeling of location-

critical performance metrics.

The rest of this paper is organized as follows. In Section II

we briefly review the research work in the field of geometric

probability for random distances, and the applications of dis-

tance models for communication networks. In Section III, we

present the derivation of the probabilistic distance distributions

for hexagons, through a geometric integral of the quadratic

product. The case studies in both sparse and dense networks

are given in Section IV. Section V concludes the paper with

future work.

II. BACKGROUND AND RELATED WORK

Random distances associated with different geometric

shapes, where node locations follow a certain distribution, have

been a research problem with a long mathematical history. In

this section we review the classic work with the main focus

in the field of mathematics and statistics, and the application

of these results in communication networks.

A. Geometrical Distribution of Node Distances

The study of the distribution of node distances dates back to

the 1940’s [17], [18], and the problem of deriving the expected

distance between random points was listed as problem number

75-12 of the Society for Industrial and Applied Mathematics

Review [19]. While this problem has drawn considerable

attention from the literature (please refer to [20]–[22] and the

references therein), obtaining the distribution of random dis-

tances, which leads to all statistical moments of the distance,

turns out to be very challenging yet highly useful when dealing

with the problems in random networks. Some research focused

on the random distances when one of the endpoints is fixed [9],

whereas the problem becomes especially difficult when both

the endpoints are random.

[23] is among the first of these efforts, where the classical

Crofton technique and its extensions were used for obtaining

the geometrical distribution of node distances associated with

circles and squares. Later, [9], [24], [25] showed a few

simple geometrical cases where their distance distributions

can be derived analytically. [5] in particular, is a collection

of methods for distance distributions in different elementary

geometric shapes. These methods, either using local or global

perturbations, differential equations or elementary statistical

techniques, provide key insights into our understanding of

the probabilistic nature of random networks, including our

previous work [3]. However, many of these efforts either

studied random distances from a fixed reference point, or

employed techniques that yield explicit distributions for very

specific network topologies [5]. Particularly, the independence

of node coordinates must be maintained [3], [17], [18].

B. Distance Distributions and Communication Networks

Although the relevant research on random distances has

been conducted for a long time, only until recently have people

in the field of networking research begun using this tool in the

analytical modeling and optimization of network systems. In

a spatially random network, nodes are typically distributed

over an area or volume, following a certain distribution.

The distance between these nodes plays an important role

in determining several fundamental performance metrics, as

listed briefly in the following.

Position-based routing and hop distance statistics. There

are ad hoc routing protocols which make forwarding decisions

based on the geographical location of a packet’s destina-

tion [11]. Nodes are typically stationary, and a sequence

of data forwarding results in different covered distances at

each hop towards the destination. Hop distance [26] and hop

count [1] statistics are critical to the reliability of message

delivery, as well as the minimization of multihop energy

consumption [3]. These performance statistics, determined by

the pairwise distance between intermediate nodes, are crucial

to the applications with energy constraints, yet requiring high

message delivery ratio.

Stochastic properties of a random mobility model. A

device is allowed to move randomly inside a given region,

and its trajectory is then formed by a set of polylines between

random points [7]. The stochastic process of the distances

between random points is characterized by their spatial dis-

tribution. By also knowing the speed characteristics of the

device, one can obtain its transition process among random

points [2]. Similarly, the tour length of the traveling salesman

problem (TSP) in a zone, with uniform demand density, can be

reduced to the same problem [12]. The resultant travel delay is

important to many time-sensitive applications where a minimal

service latency is preferred.

Path loss, energy consumption, and interference. In a

wireless communication channel, the strength of transmitted

signals falls off with the distance between transceivers at rate

α, the path loss exponent. Power control schemes are needed

to determine the required transmission power to overcome

this path loss. On the other hand, the energy required to

successfully deliver a packet increases super-linearly with the

distance between transceivers. The energy consumption (or

received power) thus can be expressed as an α-moment of the

(reciprocal) node distance [3], [13]. Meanwhile, the received

signal at a receiver is superposed with other unintended

signals being transmitted in the vicinity [14]. By knowing

the statistical distribution of node distances, the cumulative
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interference at the receiver can be modeled as an additive

random variable. However, due to the intractability of the

problem, approximations are used in most cases [14], [15].

SINR and channel capacity. A successful decoding of the

received symbols is a random event with probability dependent

on the ratio between the strength of the desired signal from an

intended transmitter, and that of the unintended interference

plus thermal noise, i.e., the signal-to-interference-and-noise

ratio (SINR). Consequently, the channel capacity is determined

by the SINR according to Shannon’s Theorem [4], and this

capacity dictates an acceptable modulation and coding scheme

at a given symbol error rate.

All the metrics listed above are related to the node location

and distance, which is in close relation to the network deploy-

ment (i.e., the distribution of network devices) and geometry

(network shape and size). They are particularly important at

the network planning and dimensioning stage. However, most

existing work has only tackled the moments of the distances

(means and variances) [14], characterized the exact distribution

for simple network topologies [1], [3], [7], or the distribution

with one fixed point [4], [13]. These assumptions have limited

the current works to square and rectangular networks [1],

[3], or between randomly located users and a fixed reference

point [4]. Even though the knowledge of random distances is

crucial in the networking research area, relatively little work

has been done to give a general, unified formulation, and

no explicit results are available in the literature for complex

geometries such as hexagons.

In this paper, the probabilistic distance models that we

develop, are exactly filling the gap in the literature. The models

are able to deal with both elementary and complex geometries,

and convex and concave communication regions, through a

simple but elegant formulation.

III. RANDOM DISTANCES ASSOCIATED WITH SQUARES,

RHOMBUSES AND HEXAGONS

A. Formulation and Definitions

The Euclidean distance between random points,

(X1, Y1) and (X2, Y2) on a Cartesian plane,

D =
√

(X1 − X2)2 + (Y1 − Y2)2, is a function of the

coordinate differences. Let random variable Z denote the

squared Euclidean distance D2, and X = X1 − X2 and

Y = Y1 − Y2, then Z = X2 + Y 2 is a function of X and

Y . By going back to the definition of distance distribution,

we develop a general, unified approach to obtaining the node

distance distribution, by a quadratic product of the conditional

probability function, and the density of random variables.

Using geometric integral, this approach decomposes the

geometrical constraints and distributions of random points,

i.e.,

1) The Probability Function Fω(Z|X, Y ), given in the

form of a conditional probability that is a function of

the coordinate differences X and Y with geometrical

constraints Ω on (X1, Y1) and (X2, Y2);

y
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(a) Random Points in a Rectangle.
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(b) Z = X2 + Y 2 when a = 3, b = 2.

Fig. 1. Random Distances within a Rectangle: the Geometrical Approach.

2) The Probability Density of the coordinate differences,

fω(X, Y ), where general distributions can be applied to

(X1, Y1) and (X2, Y2).

By the definition of conditional probability, and Z as a

function of X and Y as mentioned above, the corresponding

formulation is given as follows

PΩ(Z ≤ z) =

∫∫

ω

P (Z(X, Y ) ≤ z|X = x, Y = y)

·fX,Y (x, y)dxdy, (1)

where Fω(Z|X, Y ) = P (Z(X, Y ) ≤ z|X = x, Y = y) is the

conditional probability function, and fω(X, Y ) = fX,Y (x, y)
is the probability density function. PΩ(Z ≤ z) is obtained by

the integration of Z projected onto the X -Y plane according

to ω, which is transformed from Ω. The intuition behind this

product is the correspondence between a geometric shape and

the characteristics of random coordinates within the shape.

This formulation can be expressed in the same form, regardless

of the network geometry and the node distribution. Starting

from rectangles and squares, we show in this section that our

approach can be extended to parallelograms and rhombuses.

Using rhombuses as the building block, we finally extend the

approach to hexagons.

Henceforth, we use the upper case X for a random variable,

and lower case x for a sampled value of X , and X denotes the

set of all possible values of X . We assume that the probability

distribution of random points is uniform within the corre-

sponding geometric shape, i.e., the probability measure of any

Borel set is proportional to its area, and use notation U [a, b] for
a uniform distribution over interval [a, b]. Note that in many

cases in the literature, the distribution of nodes is assumed

to be a Poisson Point Process (PPP). Although the study of

such networks is analytically convenient, PPP is only suitable

for the scenario where the network size and node population

is infinite. In practical networks, nodes are often distributed

uniformly at random in a finite region, and the number of

nodes in the network is also finite. Therefore we consider

a uniform, finite network in the following. Nevertheless, the

above formulation also applies to PPP by replacing fω in (1)

with Skellam distribution [33].
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B. Rectangles and Squares: the Geometrical Approach

In our previous work [3], we used a standard statistical

approach to deriving the distribution of random distances

between points within and between squares. The standard

approach was a four-step process, where the distributions of

difference V = X1 − X2 (or Y1 − Y2), square S = V 2, sum

Z = SX + SY and square-root D =
√

Z of random variables

were derived, respectively. The drawback of this approach is,

the condition that Z = SX +SY can be derived by convolution

is based on the independence of SX and SY , which requires

the X and Y coordinates of each point on the plane to be

stochastically independent. This assumption holds for both

squares and rectangles.

[5], [25] used similar approaches and derived the distance

distributions for rectangles. The derivation in [17], [18], on

the other hand, is based on the joint distribution of X1 − X2

and Y1 − Y2, which leads to a closed form only when the

corresponding point coordinates are independent. Successful

as they were, the approaches with the strong coordinate inde-

pendence assumption are difficult to extend to other geomet-

rical shapes, such as the random points in parallelograms or

rhombuses where the X and Y coordinates are interdependent.

We show in this section that, using the formulation in (1), the

distributions of random distances associated with rectangles,

squares, parallelograms and rhombuses, can all be obtained in

closed form, no matter whether the X and Y coordinates are

interdependent or not.

1) Rectangles—an Illustration: Figure 1(a) shows a rect-

angle of size a × b, with two random points A(X1, Y1) and

B(X2, Y2). Using the same notation as that in [3], we have

Z = X2 + Y 2, where X ∈ [−a, a] and Y ∈ [−b, b]. By the

product formulation in (1), the distribution of Z is

FZ(z) = PΩ(Z ≤ z) = P (X2 + Y 2 ≤ z) (2)

=

∫∫

P (x2 + y2 ≤ z|X = x, Y = y)

·fX,Y (x, y)dxdy

where Fω = P (x2 + y2 ≤ z|X = x, Y = y) is the

probability function given as a conditional probability, and

fω = fX,Y (x, y) is the joint probability density function

of random variables X and Y . In rectangles, we have

fX,Y (x, y) = fX(x)fY (y), where fX(x) and fY (y) are the

(marginal) probability density functions of X and Y ,

fX(x) =
1

a2

{

a + x −a ≤ x ≤ 0

a − x 0 ≤ x ≤ a
(3)

and

fY (y) =
1

b2

{

b + y −b ≤ y ≤ 0

b − y 0 ≤ y ≤ b
, (4)

both following a symmetric triangular distribution. The geo-

metric interpretation of (2) is shown in Fig. 1(b): a bowl cut

off by the boundaries of (3) and (4) at X = ±a and Y = ±b.

Figure 1(b) also shows the contours of Z projected onto the

X -Y plane, each of which corresponds to a specific value of

x
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B
R

S

P

Q

(a) Random Points in Squares.
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(b) Two Sub-cases for Z = |AB|2.

Fig. 2. Random Distances Associated with Squares.

Z and together forms a series of concentric circles centered

at (0, 0). The above function X2 + Y 2 = Z can be used for

both rectangles and squares, whereas a different function will

be used for parallelograms and rhombuses. In the following

we first illustrate the derivation of distance distributions for

squares where a = b.

2) Distance Distributions Associated with Squares: There

are three cases of random distances associated with squares

as shown in Fig. 2(a): AB located within the same square;

RS inside two parallel adjacent squares sharing a side; and

PQ inside two adjacent squares having a common diagonal.

Note that PQ is a random node pair communicating across a

concave geometric shape.

The projections of Z on the X -Y plane are shown in

Fig. 2(b), assuming a = b = 1 for simplicity. Take |AB| in
Fig. 2(a) as an example, the X -Y plane in Fig. 2(b) is divided

into four compartments by X = 0 and Y = 0, the transitional

values in (3) and (4). The area of the projection x2 + y2 ≤ z

in the four compartments is determined by a specific value

of Z. Therefore, as the circular projection of Z expanding,

we find three transitional values: z1 = 0 where the circle is

a point at the origin, z2 = 1 where X = ±1 and Y = ±1
become the tangent lines of the circle, and z3 = 2 where the

radius of the circle is equal to
√

2 (or equal to
√

a2 + b2 for

a rectangle). Given the three transitional values, we have two

subcases when z ∈ [z1, z2] and [z2, z3], respectively:
i) 0 ≤ z ≤ 1: The entire circle lies inside the boundary of

fω, as shown by the small circle in Fig. 2(b). In the first

quadrant where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we have

fX,Y (x, y) = (1−x)(1−y). Therefore, FZ(z) in this quadrant

is
∫

√
z

0

∫

√
z−y2

0
(1 − x)dx(1 − y)dy. Because of symmetry,

FZ(z) = 4

∫

√
z

0

∫

√
z−y2

0

(1−x)dx(1−y)dy =
z2

2
−8

3
z3/2+πz.

The probability density function (PDF) is the derivative of

FZ(z), i.e.,

fZ(z) = F ′
Z(z) = z − 4

√
z + π.

ii) 1 ≤ z ≤ 2: Part of the circle is cut off by the boundary

of fω . The corresponding fZ(z) can be derived similarly:

fZ(z) = 2 sin−1

(

2

z
− 1

)

− z + 4
√

z − 1 − 2.

1820



θ

x

y

θ

A’(x’,y’)

o’o

A(x,y)

a

b

(a) A Rectangle Becomes a Par-
allelogram.

−3
−2

−1
0

1
2

3

−2

−1

0

1

2
0

5

10

15

20

X
Y

Z

(b) Z = X2 + 2 cos θXY + Y 2 when
a = 3, b = 2 and θ =

π

3
.

Fig. 3. A Rectangle Squeezed into a Parallelogram.

With D =
√

Z, the distance distribution fD(d) is

fD(d) = F ′
Z(d2) = 2dfZ(d2). (5)

fD(d) for |SR| and |PQ| in Fig. 2(a) are derived in a

similar way, by shifting the transitional values in (3) and (4),

and plugging (5) into the corresponding FZ(z). The results

obtained here agree with the previous work [3], [5], [17],

[18], [25]. However, the new derivation does not rely on the

assumption of coordinate independence, and does not require

complicated convolution.

Although unit squares are assumed throughout above, the

distance distribution can be easily scaled by an arbitrary

nonzero scalar. Let the scalar be s, then

FsD(d) = P (sD ≤ d) = P (D ≤ d

s
) = FD(

d

s
).

Therefore,

fsD(d) = F ′
D(

d

s
) =

1

s
fD(

d

s
). (6)

C. Parallelograms & Rhombuses: An Intermediate Geometry

1) Parallelograms—the Squeezed Rectangles: From a ge-

ometric perspective, parallelograms and rhombuses are the

squeezed version of rectangles and squares, respectively. Sup-

pose that initially, a point A(x, y) lies in the rectangle shown in
Fig. 3(a). This point forms a right triangle OAO′ with the X -

axis. Squeezing the rectangle by π
2
−θ (assuming 0 ≤ θ ≤ π

2
),

A(x, y) becomes A′(x′, y′) in the parallelogram, which forms

an obtuse triangle OA′O′ with the X -axis. From A to A′,

there is the following affine transformation [34]:
[

x′

y′

]

=

[

1 cos θ

0 sin θ

]

·
[

x

y

]

, or

{

x′ = x + y cos θ

y′ = y sin θ
.

(7)

Therefore, a rectangle is a degenerated case of a parallel-

ogram when θ = π
2
. In the following, we use (X ′

1, Y
′
1) and

(X ′
2, Y

′
2) (and (X1, Y1) and (X2, Y2)) as the random variables

denoting the coordinates after (and before) the squeeze trans-

formation in (7). For the points within the same parallelogram,

Z = D2 = (X ′)2 + (Y ′)2 = (X ′
1 − X ′

2)
2 + (Y ′

1 − Y ′
2)2 (8)

= [(X1 − X2) + cos θ(Y1 − Y2)]
2

+ [sin θ(Y1 − Y2)]
2

= (X1 − X2)
2 + 2 cos θ(X1 − X2)(Y1 − Y2) + (Y1 − Y2)

2

where (X1, Y1) and (X2, Y2) are the corresponding coordi-

nates in the original rectangle. As the value of θ changes, only

A’

x

y
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(a) Random Points in Rhombuses.
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Fig. 4. Random Distances Associated with Rhombuses.

the coefficient 2 cos θ will change in (8). Still let X = X1−X2

and Y = Y1 − Y2 be the difference of X and Y-coordinates
before the transformation, then Z = X2 +2 cos θXY +Y 2. In

analytic geometry, this equality satisfies the implicit equation

of a non-degenerated real ellipse [30] when θ 6= π
2
. The

probability function therefore becomes P (x2 + 2 cos θxy +
y2 ≤ z|X = x, Y = y). When θ = π

2
, (8) degenerates to the

formulation for a rectangle as shown in (2).

Without loss of generality, for a parallelogram of side length

of a and b, and with uniformly distributed random points,

then X1, X2 ∼ U [0, a] and Y1, Y2 ∼ U [0, b] in the original

rectangle. Therefore, the distributions of X and Y are the

same as in (3) and (4). The geometric interpretation of Z =
X2+2 cos θXY +Y 2 in the three-dimensional space, assuming

a = 3, b = 2 and θ = π
3
, is shown as the squeezed bowl in

Fig. 3(b), where the projections of Z on the X -Y plane are

concentric ellipses centered at (0, 0), with cutoffs at X = ±a

and Y = ±b. It is interesting to observe that after a rectangle

has been squeezed to a parallelogram, the shape of Z = D2

has also been squeezed, and the projections on the X -Y plane

are squeezed from circles to ellipses. The level of the squeeze

from circles to ellipses in the projected domain is determined

by the same squeeze from rectangles to parallelograms.

2) Distance Distributions Associated with Rhombuses:

Define a unit rhombus as the rhombus with an acute angle

of θ = π
3
and a side length of 1. The coordinates of a point in

the rhombus are x′ = x + y
2
and y′ =

√
3

2
y, according to (7),

where x and y are the coordinates in the original unit square

and follow U [0, 1]. Thus,

Z = D2 = X2 + XY + Y 2. (9)

Note that this method can be applied to more general

parallelograms and rhombuses where θ ∈ [0, π
2
]. By Z given

in (9), the distribution becomes

FZ(z) = PΩ(Z ≤ z) = P (X2 + XY + Y 2 ≤ z) (10)

=

∫∫

[

P (x2 + xy + y2 ≤ z|X = x, Y = y)

·fX,Y (x, y)] dxdy.

Consequently, the elliptical projections of Z on the X -Y
plane, are cut off by X = ±1 and Y = ±1, the boundaries

of fω . There are four cases of the geometric locations of two

random points, when rhombuses are adjacent and similarly
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oriented, as shown in Fig. 4(a): i.e., A′B′ that are within the

same rhombus; R′S′ that are inside two parallel rhombuses

sharing a side; P′Q′ and M′N′ that are inside two rhombuses

sharing a common diagonal. Here P′Q′ and M′N′ are two

different cases between two points in a concave geometry.

Take |A′B′| in Fig. 4(a) for example. Because of symmetry,

there are only four transitional values of Z as the ellipse

expanding: z1 where the ellipse is a point at the origin, z2

where X = ±1 or Y = ±1 become the tangent lines of the

ellipse, z3 where the semimajor axis of the ellipse is equal

to
√

a2 + b2 =
√

2, and z4 where the semiminor axis of the

ellipse is equal to
√

2. The semimajor axis and semiminor axis

of ellipse X2 + XY + Y 2 = Z are
√

2Z and

√

2

3
Z, and thus

z1 = 0, z2 = 3

4
, z3 = 1 and z4 = 3. When 0 ≤ z ≤ 3

4
, we

have

FZ(z) = 2

[

∫

√
z

0

∫ − y

2
+
√

z− 3

4
y2

0

(1 − x)dx(1 − y)dy

+2

∫ 0

−
√

z

∫ − y

2
+
√

z− 3

4
y2

−y

(1 − x)dx(1 + y)dy

]

=

(

2

3
+

π

9
√

3

)

z2 − 32

9
z3/2 +

2π√
3
z,

and

fZ(z) =

(

4

3
+

2π

9
√

3

)

z − 16

3

√
z +

2π√
3
.

When 3

4
≤ z ≤ 1, the ellipse intersects with boundaries

X = ±1 and Y = ±1. fZ(z) can be derived by careful

integration along the common boundary determined by both

the ellipse and fω, and the result for this subcase is

fZ(z) =
8√
3

(

1 +
z

3

)

sin−1

√
3

2
√

z
+

(

4

3
− 10π

9
√

3

)

z

+
10

3

√
4z − 3 − 16

3

√
z − 2π√

3
.

The rest of the derivation can be done in the same way.

The results for |S′R′|, |P ′Q′| and |M ′N ′| shown in Fig. 4(a)

are summarized in our technical report [28]. This is, for the

first time in the literature, that the distribution functions of

random distances are derived for rhombuses. Also note that in

a cellular system, when hexagonal cells are split into different

sectors using directional antennas, the covered area of each

sector resembles a rhombus. Being the building block of a

hexagon, rhombuses bridge the gap between the elementary

geometry of squares, and the complex geometry of hexagons.

D. Distance Distributions Associated with Hexagons

Define a unit hexagon as the regular hexagon with a side

length of 1. Two random endpoints of a given link inside a unit

hexagon, as shown in Fig. 5(a), will fall into either one of the

two cases: both endpoints are inside the same unit rhombus,

e.g., A′B′, with probability 1

3
; each endpoint falls into one

of the two adjacent rhombuses sharing a side, e.g., E′F′, with

probability 2

3
. Denoting the distribution for |A′B′| as fDR1

(d),
and |E′F ′| as fDR2

(d), the probability density function of

A’

E’

F’

B’

x

y

o

(a) Relationship between Rhom-
buses and a Hexagon.

(b) Geometric Interpretation of (11).

Fig. 5. Random Distances Associated with a Hexagon.

the random Euclidean distances between two endpoints in a

hexagon is 1

3
fDR1

(d) + 2

3
fDR2

(d), i.e., a probabilistic sum.

Following the same squeeze transformation as that in (7),

and denoting the coordinates as E′(X ′
1, Y

′
1) and F′(X ′

2, Y
′
2),

then X ′
1 = X1 + Y1

2
, Y ′

1 =
√

3

2
Y1, X ′

2 = X2 + Y2

2
, and Y ′

2 =

−
√

3

2
Y2, where X1, Y1, X2 and Y2 ∼ U [0, 1]. We then have

the squared Euclidean distance Z as

Z = (X ′
1 − X ′

2)
2 + (Y ′

1 − Y ′
2)2

=

[

(X1 − X2) +
1

2
(Y1 − Y2)

]2

+

[√
3

2
(Y1 + Y2)

]2

= (X1 − X2)
2 + (X1 − X2)(Y1 − Y2) + Y 2

1 + Y1Y2 + Y 2
2

Let X = X1 − X2, and thus

Z = X2 + X(Y1 − Y2) + Y 2
1 + Y1Y2 + Y 2

2 (11)

Note that the two rhombuses where E′ and F′ are located,

are flipped with respect to the X -axis, with different orienta-

tions, which differentiates them from all the four cases shown

in Fig. 4. Therefore, for |E′F ′|, the rhombus technique needs

to be further extended. The geometric interpretation of (11)

with different values, or the isosurfaces of Z, is concentric

cylinders as shown in Fig. 5(b) when the value of Z increases.

Z is hence a four-dimensional geometric shape. The projection

ω is then drawn on a three-dimensional effective region,

defined by fω = fX,Y1,Y2
(x, y1, y2). The final results of the

distance distributions inside a hexagon, as well as between two

adjacent hexagons sharing a side, are given in our technical

report [29]. The distance distributions for random distances in

hexagons are also obtained for the first time in the literature.

E. Verification of Distance Distributions

Looking at Fig. 2(a), the four adjacent unit squares together

resemble a large square, with a side length of 2. Assuming

that the distance distribution for |AB| in Fig. 2(a) is fDS1
(d),

and those for |SR| and |PQ| are fDS2
(d) and fDS3

(d). Then
according to (6), the distance distribution in the large square

is

f2D(d) =
1

2
fDS1

(
d

2
). (12)
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Fig. 6. Distance Distributions of Hexagons, Simulation and Polynomial Fit.

On the other hand, the two random endpoints of a given

link inside the large square will fall into one of the three

cases: both endpoints are inside the same unit square, with

probability 1

4
; each of the two endpoints falls into one of the

two parallel squares, with probability 1

2
; both endpoints fall

into two diagonal squares, with probability 1

4
. The distance

density function for the large square can also be given by a

probabilistic sum,

f2D(d) =
1

4
fDS1

(d) +
1

2
fDS2

(d) +
1

4
fDS3

(d). (13)

It can be verified that the RHS of (12) and (13) are

equivalent. The same verification can be applied to both

rhombuses and hexagons, with similar scaling functions and

probabilistic sums, the details of which are given in [28] and

[29]. The corresponding results are a strong validation of the

correctness of the distance distribution functions that we have

derived.

[28] and [29] also give the statistical moments, variances,

and polynomial approximations of the distance distribution

functions, which facilitate the practical utilization of the

distribution functions. Polynomial fit in particular, makes

it especially convenient to utilize these results, meanwhile

maintaining the level of accuracy. Our previous work [3] shows

examples of generating and using some of the polynomials, in

modeling the energy consumption in wireless sensor networks.

Figure 6 plots the PDFs of the distance distributions within a

hexagon and between two adjacent hexagons, of which the side

lengths are both s = 100 m using (6). The validity of the PDFs

is also cross-checked using Monte Carlo simulation results by

100, 000 randomly generated node locations in one hexagon,

and between two hexagons. Figure 6 also plots the polynomial

fits given in [29] in the zoom-in subfigure. In both cases, the

polynomials fit very well with the analytical distributions, and

the differences are negligible until zoomed in.

IV. PERFORMANCE STUDY USING DISTANCE

DISTRIBUTIONS

Using the distance distribution functions derived in Sec-

tion III, we are able to further analyze the performance metrics
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Fig. 7. Nearest Neighbor Distribution.

discussed in Section II. Starting from a challenging scenario

where nodes are sparsely deployed, we analyze the nearest

neighbor of a node in a hexagonal network. In a dense

network, we analyze the farthest neighbor that a node can

reach through a single hop. By choosing appropriate neighbors

for packet relay, the underlying routing protocols benefit from

the minimization of energy consumption and routing overhead

in these two scenarios, respectively.

Previously, the distance distributions of circles have been

widely used to approximate a hexagon: the inscribed or

enclosing circles, and the circles with the same area as the

hexagon [16]. When the communication involves adjacent

hexagons, however, circular geometries either overlap or leave

gaps between each other. Therefore, we also show that when

compared with the explicit hexagon distribution models, tra-

ditional circular approximations are less accurate or even not

applicable, in analyzing both the statistical distribution and

expected average of the system performance metrics.

A. Sparse Network Scenario: the Nearest Neighbor

In a sparse network where the network size is larger

than the communication range of a node, an energy-efficient

routing protocol will choose the nearest neighbor as the packet

forwarder in order to conserve energy at each node. This

is particularly important when the network device has very

limited energy supply. Suppose there are n nodes located in

the same area, for a random node i, the minimum distance

from n − 1 nodes to i is

δ = min{d1, d2, · · · , dn−1}. (14)

The distribution function of δ is

F∆(δ) = 1 − P (di ≥ δ)n−1 = 1 − [1 − FD(δ)]
n−1

,

where FD(·) is any of the distance distribution CDFs derived

in the last section. The PDF of δ is thus

f∆(δ) = (n − 1)fD(δ) [1 − FD(δ)]
n−2

. (15)
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Fig. 8. Expected Distance to Nearest Neighbor.

Similarly, the k-th nearest neighbor to node i can be

derived by order statistics. In the following we use hexag-

onal topology since it is commonly used in communication

networks. Figure 7(a)–(d) show the corresponding PDFs in

(15) using the hexagon distribution functions we derived.

It also shows those three circular approximations, of which

the distance distribution functions are given in [10] for non-

overlapping circles. When circles overlap, results from Monte

Carlo simulations are used, because no closed-form PDFs are

available in the literature except for empirical approximations

on CDFs [31].

Figure 7(a) and (b) plot the PDFs in (15) using distance

distribution within a hexagon, when the side length of the

hexagon is 100 m, and the total number of nodes is n =
300 and 1, 000, respectively. When the network size is fixed,

the increased number of nodes makes the nearest neighbor

closer to node i. Also note that, the tails of the PDFs are

truncated at 15 m in the figure. Although the longest distance

between nodes can be 200 m, it is very likely that the nearest

neighbor is only a few meters away. Figure 7(c) and (d) use

the distribution between two adjacent hexagons, with the same

parameters as Fig. 7(a) and (b), and are truncated at 70 m. In

these two figures, none of the circular approximations give

a good fit to the hexagon distributions. Intuitively, inscribed

circles skew nodes apart from the hexagon boundary, whereas

same-area circles and enclosing circles both include areas not

belonging to the hexagon.

The expectation of the distance to the nearest neighbor can

be obtained by integrating (15) over the hexagonal area. The

results are given in Fig. 8(a) and (b). In both figures, the zoom-

in subfigures are between adjacent hexagons. In Fig. 8(a), the

28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Distance − d (n=300)

P
D

F
 (

W
it
h

in
 H

e
x
)

28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Distance − d (n=1000)

P
D

F
 (

W
it
h

in
 H

e
x
)

60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

(c) Distance − d (n=300)

P
D

F
 (

B
e

tw
e

e
n

 H
e

x
)

60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) Distance − d (n=1000)

P
D

F
 (

B
e

tw
e

e
n

 H
e

x
)

 

 

Hex Distribution Circle, Inscribed Circle, Same Area Circle, Enclosing

Fig. 9. Farthest Neighbor Distribution.

hexagon size is fixed at 100 m, and Fig. 8(b) fixes the number

of nodes at 1, 000. From Fig. 8(a), if the underlying routing

protocol chooses the nearest neighbor within a hexagon of

size 100 m, the expected distance is less than 8 m with more

than 100 nodes, whereas an average distance of 82.6 m is

needed to reach an arbitrary node [29]. We may also observe

that in a single hexagon, circles can approximate relatively

well; but when nodes communicating between hexagons, the

error of circular approximations grows super-linearly. It is also

interesting to see in Fig. 8(b) that the distance to the nearest

neighbor increases linearly with the network size because of

the uniform distribution.

B. Dense Network Scenario: the Farthest Neighbor

In a sparse network, it is highly desirable to choose the

nearest neighbor for improving energy efficiency. In a small,

densely deployed network, on the other hand, it is common

for a node to have several neighbors simultaneously. As a

result, the number of transmissions and routing overhead can

be minimized by choosing the farthest node as the packet

forwarder. Suppose the total number of nodes is n, for node

i define

γ = max{d1, d2, · · · , dn−1}. (16)

The distribution of γ has CDF

FΓ(γ) = P (di ≤ γ)n−1 = Fn−1
D (γ),

and the corresponding PDF

fΓ(γ) = (n − 1)fD(γ)Fn−2
D (γ). (17)

Figure 9(a) and (b) plot the PDFs in (17) using distance

distribution within a hexagon, of which the side length is

20 m, and the total number of nodes is n = 300 and 1, 000,
respectively. The increased number of nodes brings the farthest

neighbor closer to the network boundary at 40 m. Thus the left

tails of the PDFs are truncated at 28 m. Figure 9(c) and (d)
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show the distribution between two adjacent hexagons with the

same parameters, and are truncated at 58 m. In Figure 9(a)–

(d), it is obvious that none of the circular topologies give a

good approximation for hexagons.

Figure 10 shows the expected distance to the farthest neigh-

bor, with increasing number of nodes. The zoom-in subfigure

shows that between two adjacent hexagons. Compared with the

nearest neighbor, the increase in the number of nodes does not

improve the expected distance much, since the farthest node

is already around the network boundary. We can anticipate

that in a dense network, single hop is very likely to reach the

farthest neighbor. The underlying routing protocol thus can

achieve the minimal routing overhead.

V. CONCLUSIONS

In this paper, we develop a unified approach to deriving the

distribution of random distances, by a quadratic product of the

probability function and the probability density. The closed-

form probability density functions of the random distances

associated with hexagons, are derived for the first time in the

literature. We further use the results to investigate the nearest

and farthest neighbor statistics in both sparse and dense net-

work scenarios. The analytical and simulation results show the

high accuracy and promising potentials of this approach. Our

future work includes deriving the conditional probability of

the distance distributions associated with hexagons, which can

be utilized to model location-dependent, additive interference,

and cooperative communications. We believe the probabilistic

models presented in this paper and their future extensions

will provide important guidelines for more accurate network

dimensioning and better protocol design.

REFERENCES

[1] C. Bettstetter and J. Eberspacher, “Hop distances in homogeneous ad
hoc networks”, in Proc. 57th Vehicular Technology Conference (VTC’03),
pp. 2286–2290, 2003.

[2] C. Bettstetter, H. Hartenstein and X. Pérez-Costa. “Stochastic properties
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