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ABSTRACT

Vehicular ad-hoc networks (VANET) promise to enhance the
road safety and travel comfort significantly in both highway
and city scenarios. Message propagation, either for emer-
gency or pleasure purposes, constitutes a major category
of VANET applications, and is particularly challenging in
infrastructure-less vehicle-to-vehicle communication scenar-
ios. In this paper, we study the connectivity property of
message propagation in two-dimensional VANET. We first
derive the exact expression for the average size of the con-
nected components in the one-dimensional case, i.e., mes-
sages propagating along a main street, and give a close ap-
proximation to the size distribution. We further derive the
connectivity of message propagation in the two-dimensional
ladder case, i.e., covering the main and two side streets, and
formulate the problem for the two-dimensional lattice case
to cover all the blocks in a district. Extensive simulation has
been conducted to verify the analytical model and provide
further insights in message propagation with and without
geographic constraints, respectively. The simulation results
show the efficacy of the model and the tradeoff between these
two message forwarding strategies, and provide guidelines
for future network planning and protocol development.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms

Performance
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1. INTRODUCTION
Vehicular ad-hoc networks (VANET), a major component

of the future intelligent transportation systems (ITS) [1],
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promise to enhance the road safety and travel comfort sig-
nificantly in both highway and city scenarios. With the allo-
cation of frequency bands for the dedicated short-range com-
munications (DSRC) [2] around the world, vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) wireless commu-
nications have attracted a lot of attention from academia,
industry and standards organizations for protocol design,
performance evaluation and system prototyping.

Message propagation, either for emergency or pleasure
purposes, constitutes a major category of VANET applica-
tions. For example, emergency electronic break light mes-
sages can alert the drivers of following vehicles, even when
their view has been obstructed by others. Also, vehicles in
congested areas can notify the drivers of incoming vehicles
to detour well in advance. Further, parking lots, hotels and
restaurants can advertise their availability to vehicles sev-
eral blocks away, reducing the extra time and fuel wasted
when the drivers are looking for empty spots.

However, for message propagation in infrastructure-less
V2V communication scenarios, it is very challenging to en-
sure that the message is delivered reliably and in time. Many
research efforts have focused on MAC and routing protocol
design and performance evaluation, but relatively few have
considered the fundamental limits of message propagation,
and how to explore both vehicle and traffic characteristics
in highway or city scenarios to improve message delivery.

In this paper, we study the connectivity property of mes-
sage propagation in two-dimensional VANET, i.e., how likely
a message is propagated a certain distance away from the
source. We first derive the exact expression for the aver-
age size of the connected components (vehicles connected
through wireless communications) in the one-dimensional
(1-d) case, i.e., messages propagating along a main street,
and give a close approximation to the size distribution. The
results show that due to the dimensional constraint on mes-
sage propagation, there is always a non-negligible proba-
bility that the message delivery cannot be guaranteed. To
improve the connectivity and coverage, two-dimensional (2-
d) message propagation is necessary. Thus we further derive
the connectivity of message propagation for the 2-d ladder
case and formulate the problem for the 2-d lattice case, for
covering main-side streets and city blocks, respectively.

The contributions of this paper are threefold. First, al-
though the limitation on the connectivity in the 1-d case
has been shown in the literature, we have derived the exact
expression for the average size of the connected components,
using a much simpler and more accurate approach validated
by simulation results. Second, we have derived the exact ex-
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pression for the connectivity probability for the 2-d ladder
case, for which we have not found similar results the litera-
ture yet. 2-d ladder is of practical importance in VANET,
and the results can be applied to the often-seen main-side
street scenarios (e.g., congestion detour to the side streets
from a main street), or the scenario where messages are ag-
gregated and re-propagated for each adjacent street. Simu-
lation results have shown the accuracy of this model. Third,
we have also formulated the problem for the 2-d lattice case,
which generalizes the 1-d and 2-d ladder case. Although no
closed-form expression is obtained for the 2-d lattice case
due to the intrinsic hardness of the 2-d percolation process,
we demonstrate the tradeoff between two message forward-
ing schemes with and without geographic constraints, re-
spectively, and their performance, providing guidelines for
future network planning and protocol development.

The rest of the paper is organized as follows. In Section 2,
we briefly review the latest results in traffic modeling, perco-
lation theory and message propagation. We then present our
probabilistic models in Section 3, for 1-d (main street), 2-d
ladder (main-side streets) and 2-d lattice (city blocks) cases,
and compute the connectivity probability accordingly. Sim-
ulation results are presented in Section 4, to demonstrate the
tradeoff between two message forwarding schemes for these
three cases, followed by further discussion and concluding
remarks in Section 5 and 6, respectively.

2. BACKGROUND AND RELATED WORK
With its high social-economy impact and unique features

such as high-mobility vehicles and their highly predictable
trajectory due to road constraints, VANET has offered many
research opportunities and challenges. Here, we focus on the
traffic modeling and message propagation results that are
most relevant to our work.

2.1 Spatio-Temporal Vehicle Traffic Models
Early papers [3,4] have found that inter-vehicle distances

follow an exponential distribution. Through recent statis-
tical analysis of empirical data collected from real world
scenarios, [5–8] again found that an exponential model is a
good fit for highway vehicle traffic in terms of inter-vehicle
distance and inter-contact time distribution. Given a single
parameter, the vehicle density λ (number of vehicles per me-
ter), this model is able to describe the characteristics and
variation of highway traffic. In urban scenarios, vehicular
traffic is much more complicated due to road grids, traffic
lights and stop signs, but the exponential distribution is still
widely used in the literature. For example, [9] assumed ex-
ponential distribution in a lattice-shaped road network, and
studied network connectivity at any time instants, which is
equivalent to our study at a snapshot of the network.

In this paper we assume that the inter-vehicle distances
follow an independent and identical distribution, and use
exponential distribution as an example. Section 3 shows
that our approach can be applied to other distributions, so
long as the the connectivity probability of two adjacent in-
tersections, p, can be derived mathematically or obtained
empirically through measurement.

2.2 Percolation Theory and Applications
In classic percolation theory [10], a stochastic percolating

process is modeled as the process of liquid seeping through a
porous object, which is usually modeled as a d-dimensional

square lattice. Declare each edge in the lattice open with
probability p, and closed otherwise, the liquid penetration
is related to the existence of an infinite connected cluster of
open edges: all open clusters have finite size when p < pc,
but there exists an infinite open cluster when p ≥ pc, where
pc is the critical probability. In contrast to liquid pene-
tration, where edges can be open to all directions, there is
another percolation process called directed percolation [11],
i.e., edges only open to certain directions. According to the
prediction on directed percolation [12], if p < pc, the node
connectivity probability will steadily decrease and eventu-
ally reach 0 w.r.t. the distance to the source; if p ≥ pc, the
node connectivity probability will decrease gradually and
eventually scatter around an asymptotic value. These per-
colation processes are similar to the message propagation
in two-dimensional VANET: whether there exists a critical
threshold that the entire network is almost surely connected,
is certainly of our interest as well.

However, our main focus is to determine the probability
that a message is delivered to certain blocks away from the
source. Although similar, percolation theory focuses more
on the coverage: an infinite connected cluster does not guar-
antee messages are always reliably delivered; there may be
a lot of isolated nodes that are not connected to the infi-
nite cluster. In Section 4, the sub-critical and super-critical
behaviors from the simulation look similar to percolation,
but we also derive and formulate the accurate connectivity
probability at each intersection from the message source in
the 1-d and 2-d cases in Section 3, which is more microscopic
and important when compared with identifying whether a
network percolates or not, for message propagation.

2.3 Message Propagation and Connectivity
Existing studies have shown that the network connectiv-

ity in the 1-d case, e.g., on a highway, is always limited,
whereas for 2-d cases, e.g., city blocks, network connectiv-
ity can be guaranteed if the density among nearby nodes is
above a certain threshold. In [14], nodes were uniformly dis-
tributed along the interval [0, z], forming a one-dimensional
multi-hop radio network. Using Laplace Transforms, [14] de-
rived the probability of network connectivity as a function
of transmission range. In this paper, however, we assume
that the inter-vehicle distance follows a certain statistical
distribution. At the same vehicle density, the results in [14]
are more optimistic due to the less bursty traffic.

By using an equivalent GI|D|∞ queuing model, [15] de-
rived the connectivity distribution in one-dimensional net-
works. Node positions were equivalent to customer arrivals,
and the transmission range was modeled as a constant ser-
vice time. The results were obtained by Laplace-Stieltjes
Transforms (LST) and simplifications were used to obtain a
closed-form expression. In Section 3, we discuss and com-
pare the model in [15] with our model. Derivation and
simulation show that our approach is simpler than [5], and
the results are more accurate than [15]. [16] studied emer-
gency message propagation with time constraints, and de-
rived lower bounds on the probability that a car at a cer-
tain distance can receive the messages on time. Their lower
bounds depends on channel reliability and message dissem-
ination strategy. However, the inter-vehicle distance distri-
bution is based on a set of n equally spaced vehicles. In [17],
the fraction of the vehicles that belong to the largest con-
nected component in a two-dimensional graph was analyzed.
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Figure 1: Two-Dimensional City Grid.

It, however, did not consider how likely the message can
propagate to a certain location in the network.

It is proved in [9] that Poisson positioning allows the exis-
tence of a finite critical vehicle density, and with non-Poisson
positioning, there still exists a critical vehicle density, but at
a larger value. It is proved in [18] that the critical density
exists for a hexagon model, and the connectivity probability
increases sharply within a short interval around this density.
These papers either applied percolation theory in a scenario
other than the traditional physics and biology systems, or
proved the existence of a critical threshold; whereas the ap-
proach in this paper can be applied to the cases with gen-
eral vehicle distributions, and our work focuses more on the
connectivity property of message propagation (how likely a
message can be delivered to a location) rather than coverage
(how many vehicles can receive the message).

3. PROBABILISTIC MODEL
In this paper, we consider a two-dimensional city grid as

shown in Figure 1. Suppose W–E is the main street stretch-
ing from west to east (similarly S–N from south to north),
and a message is generated by a vehicle at O. The question
we want to answer is: how likely the message will be prop-
agated to a certain location by the vehicles on the street?
E.g., intersection E for the 1-d case, X for the 2-d ladder
case, and D for the 2-d lattice case, respectively. For model-
ing, we use the geographically-constrained (geo-constrained)
message forwarding strategy, where vehicles only forward
messages to their neighbors who are further away from the
message source, following the solid arrows in Figure 1. Please
refer to Section 4 and 5 for evaluation and discussion on
other forwarding strategies. Here we only consider the wire-
less communication and relay between vehicles, and do not
consider vehicle mobility, which is at a much lower speed
when compared with the speed of electromagnetic waves.
The “carry-and-forward” effect for delay-tolerant message
propagation in mobile VANET is our future work.

3.1 One-Dimensional Message Propagation
For the 1-d case, we focus on the main street W–E, from O

to E as an example. If the message can reach E, it means O
and E are in a “connected” cluster, in which any vehicle can
reach each other by wireless transmission and relay. Cluster
size, the distance between the first and last vehicles in the
same cluster, is of great importance in message propagation,
so in the following we characterize the cluster size first.

3.1.1 Moments of Cluster Size

The one-dimensional cluster size has been studied in [15].
Using a GI|D|∞ queuing model, the expected cluster size
E[B] is approximated by

E[B] ≈ R +

R R

0
xfX(x)dx

1 − FX(R)
, (1)

where R is the transmission range, and FX(x) =
R x

−∞
fX(x)dx

is the cumulative distribution function (CDF) of the inter-
vehicle distance. Assuming the vehicle arrival follows a Pois-
son process, i.e., fX(x) = λe−λx for x > 0, thus (1) gives

E[B] ≈ R +

R R

0
λxe−λxdx

e−λR
=

1 − e−λR

λe−λR
. (2)

As the simulation results show below, the above results are
not accurate in low-density networks. Thus, we use a simple
approach to derive the moments of cluster size without any
approximation as follows.

Denote the random variable (RV) for cluster size by C.
Because the inter-vehicle distances are assumed i.i.d. RVs1,
we have the following recursion for the expectation of C:

E[C] = E[C|X1 < R] × Pr{X1 < R}
= (E[X1|X1 < R] + E[C]) × Pr{X1 < R}, (3)

where X1 is the distance between the first two vehicles in
the cluster. For the second step in (3), given the i.i.d. dis-
tribution of the inter-vehicle distance, the average cluster
size starting from any vehicle (which is treated as the clus-
ter head) is the same. Thus, E[C|X1 < R] = E[X1|X1 <
R] + E[C′], where E[X1|X1 < R] is the average distance
between the first and the second vehicles in the cluster, and
E[C′] (equal to E[C] asymptotically) is the average cluster
size if we choose the second vehicle as the cluster head.

This recursive approach works for any inter-vehicle dis-
tance distributions and is simpler than [5]. In the following,
we use exponential distribution as an example: Pr{X1 <

R} = 1 − e−λR. Given the conditional expectation X ′
1 =

E[X1|X1 < R] =
R R

0
λxe−λx/(1 − e−λR)dx, we have

E[C] =
1 − e−λR

e−λR
× X ′

1 =
1 − e−λR(λR + 1)

λe−λR
. (4)

This simple approach gives the exact average cluster size
without any simplification. Figure 2 compares E[B] and
E[C] with simulation results. λ is set to be 0.015 (number
of vehicles per meter), and the x-axis and y-axis are the ra-
dio transmission range R and the expected cluster size in
log scale, respectively. In the figure, when λ × R is suf-
ficiently large, results from both E[B] and E[C] match the
simulation well; but for small R and λ, our approach is much
more accurate. Similar results are obtained for other traffic
densities λ and are omitted here for brevity.

Higher-order moments of C can be derived in a similar
way. For instance, the second-order moment of C is

E[C2] = Pr{X1 < R} × E[(C + X1)
2|X1 < R]

=
1 − e−λR

e−λR
×

“

E[C2] + 2E[C]X ′
1 + X ′

1
2
”

, (5)

1As the width of the street is negligible when compared with
the street length, all vehicles in a two-way street are assumed
along a line, no matter which lane they actually occupy.
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Figure 2: Comparison on Expected Cluster Size.
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Figure 3: Cluster Size Distribution Approximation
(Solid line: Gamma Approx., Dashed: Simulation).

where X ′
1
2 = E[X2

1 |X1 < R] =
R R

0
λx2e−λxdx. If we derive

all the moments, they can characterize a unique distribution.
In the next subsection, we study the density function of C,
which is very useful for deriving the connectivity probability.

3.1.2 Cluster Size Distribution

Let Xi’s (i = 1, 2, ...) be the RVs of the inter-vehicle
distance between the i-th and (i + 1)-th vehicle, given that
they are in the same cluster. We have

fXi
(x) = f(x|0 ≤ x ≤ R) =

λe−λx

1 − e−λR
, for 0 ≤ x ≤ R. (6)

Suppose that there are k vehicles in a cluster, the Laplace
Transform of the cluster size distribution is

f∗
C|k(s) = f∗

P

k

i=1
Xi

(s) =

»

λ

1 − e−λR
× 1 − e−(s+λ)R

s + λ

–k

. (7)

If we can get fC|k by taking the inverse-Laplace Trans-
form on (7), fC(x) =

P∞
k=1 fC|k Pr{k}, where Pr{k} =

(1 − e−λR)k−1e−λR is the probability that there are k ve-
hicles in a cluster. Unfortunately, (7) does not give any
closed-form result by the inverse-Laplace Transform. The
problem is complicated since C is the sum of k truncated
exponential RVs, given that they are smaller than the cutoff
value R, and k itself follows a Geometric distribution.

According to the last subsection, however, we can get the
statistical moments of cluster size. Using these moments, we
use a known Gamma distribution for approximation, since
the Gamma distribution has been widely used to model the

sum of exponentially distributed random variables. In Fig-
ure 3, vehicle transmission range is 200 m, the dashed curves
are from simulation and the solid curves are from the corre-
sponding Gamma approximation:

fC(x) = xk−1 e−x/θ

θkΓ(k)
, for x > 0, (8)

where k = (E[C2]/E[C]2 − 1)−1 and θ = E[C]/k to en-
sure that the first and second-order moments of the Gamma
approximated random variables are the same as E[C] and
E[C2]. As shown in the figure, the Gamma distribution is a
good fit for the cluster size distribution.

Once we have the cluster size distribution or approxima-
tion, the probability that a message can reach a location at
distance d away from the source, is the probability that the
cluster size is larger than d, i.e.,

R ∞

d
fC(x)dx. From fC(x), it

is clear that no matter how large the traffic density is, there
is always a non-negligible probability that the gap between
two adjacent vehicles is beyond the radio transmission range
R. Once a vehicle is disconnected from the vehicle in front
of it, the rest of the 1-d network is also disconnected. It has
been proved that in a 1-d network, the network is almost
surely disconnected [13], and the probability that a further-
away location can be reached decays very quickly, suggested
by the Gamma approximation of C. Thus, we should ex-
plore the message propagation beyond one dimension, i.e.,
not just along the main street.

On the other hand, based on the above approximated den-
sity function of C, we are able to get the probability that
two nearby intersections are connected. This probability is
useful for studying the two-dimensional connectivity.

3.2 Two-Dimensional Message Propagation
The probability that two given intersections are connected

is very important for message propagation, and it has not
been purposely investigated in the existing percolation the-
ory. We denote p as the probability that two adjacent inter-
sections of a street segment in a 2-d grid are connected. In
the following, we first derive p; then, we study the connec-
tivity property in the 2-d ladder and lattice case.

3.2.1 Bond Probability

p, as defined above, is equivalent to the “bond probabil-
ity” in percolation theory. If wireless transmissions to other
perpendicular streets are heavily shadowed, which might be
the case in cities with high-rise buildings along the street, p
can be simplified as the probability that the one-dimensional
cluster size is larger than the distance between two inter-
sections, so it can be calculated directly using the cluster
size distribution in (8). For more realistic situations when
wireless transmissions can reach perpendicular streets with
certain probability, p can be derived as follows.

As shown in Figure 4, Ve, Vs, Vw and Vn represent the
vehicles (if existing) closest to the right intersection on the
east, south, west, and north streets, respectively. Their dis-
tance to the right intersection are de, ds, dw and dn. Ve-
hicle Vo is on the street between the two intersections and
is closest to the left intersection. Vo is connected to the
source node, and its distance to the left intersection is do.
The distribution of do is a truncated exponential function
λe−λt/(1 − e−λR), for 0 ≤ t ≤ R. We consider the follow-
ing two disjoint cases that at least one of the vehicles Ve,
Vs or Vn is connected to Vo, i.e., message propagation can
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continue in a new street segment, regardless of its direction,
therefore the two intersections are connected.

Case One: The cluster originating from Vo has a size
larger than d−do, where d is the distance between two adja-
cent intersections. By considering Vo’s location and cluster
size distribution, the probability for this case is

p1 =

Z R

0

Z ∞

d−t

fC(x)dx
λe−λt

1 − e−λR
dt.

In this case, Ve is connected to Vo. Vs is connected, either
because it is within the transmission range of Vw or Ve, or
it is within the transmission range of Vn, and Vn is within
the transmission range of Vw or Ve.

Case Two: In this case, the cluster size originating from
Vo is smaller than d − do; the last vehicle connected to Vo

is Vw, and de + dw > R. In addition, one of Vn and Vs

is within the transmission range of Vw. In this case, Ve is
outside the direct transmission range of Vw, but at least one
vehicle on the south or north street can receive the message
and continue the propagation.

Denote the cluster size originating from Vo as x and let
d0 = t, to be connected to Vw, the minimum of ds and
dn must be no larger than

p

(ηR)2 − (d − x − t)2, where
η ∈ (0, 1) is the shadowing effect for signal transmissions
to other perpendicular streets. Thus, given x and t, the
conditional probability that at least one vehicle on the north
or south street is within the transmission range of Vw is

(1 − e−2λ
√

(ηR)2−(d−x−t)2). The probability of this case is

p2 =

Z R

0

Z d−t

d−t−ηR

(1− e−2λ
√

(ηR)2−(d−x−t)2)fC(x)dx
λe−λt

1 − e−λR
dt.

Considering the above two disjoint cases, p is given by

p = p1 + p2. (9)

As shown in Figure 5, the analytical results given in (9)
match well with the simulation. Here, the distance between
two adjacent intersections is d = 500 m and η = 1. The
simulation is done by scattering vehicles randomly in a 2-
d square lattice, according to the exponential inter-vehicle
distance distribution. The detailed description of simulation
settings is given in Section 4.

3.2.2 Ladder Connectivity

In this subsection we look at the 2-d ladder connectivity,
e.g., two side streets Z–X and Z′–X ′ along the main street
W–E in Figure 1. Events such as congestion detour mes-
sages are of interest to the main street and its side streets.
We derive the connectivity probability between any two in-
tersections in this ladder topology, with the constraint that
the message can only be propagated further away from the
source, i.e., geo-constrained forwarding, as an example.
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In a ladder topology, as shown in Figure 6, the source is at
(0, 0) and the destination is at (x, y) where y = ±1 (we use
y = 1 for illustration). Looking at the first row in Figure 6,
where (1, 1) is the destination, there are two paths to reach
(1, 1): path A1 where (0, 0) and (1, 1) are connected by the
intermediate node (0, 1), and path B1 where the intermedi-
ate node is (1, 0). Given that each edge is connected with
p, by the principle of inclusion-exclusion (PIE), we have the
connectivity probability for (1, 1)

P (1, 1) = P (A1 + B1) = P (A1) + P (B1) − P (A1B1)

= P (A1) + P (B1) − P (B1|A1)P (A1)

= p2 + p2 − p2 ∗ p2 = 2p2 − p4. (10)

When x ≥ 1, recursion is needed to derive the probability.
For example, in the second row of Figure 6, where (2, 1) is
the destination, it has paths A2 and B2. B2 is dependent on
A2. As shown in the B|A column, event (B2|A2) can be de-
generated to a horizontal segment plus a triangle (i.e., (1, 1)
and (2, 1) merge to a single point), given the segments in A2

are already connected. That is, P (B2|A2) = p∗(p+p2−p3),
since the two paths (from (1, 0) to (2, 1)) in the degenerated
triangle are independent (illustrated in the second sub-row
of the second row). On the other hand, P (B2) is simply
p ∗ P (1, 1), where P (1, 1) is given in (10). Using this recur-
sive method, the connectivity probability for (2, 1) can be
derived as

P (2, 1) = p3 + p ∗ P (1, 1) − P (B2|A2)P (A2)

= 3p3 − 2p5 − p6 + p7. (11)

Similar recursion can be done when x = 3. In the third
row of Figure 6, we notice that P (A3) is simply p4, P (B3) is
related to P (2, 1), and the triangle in B3|A3 can be decom-
posed into two sub-cases, one is simply p and the other is
related to B2|A2. Applying the same recursion for squares
and degenerated triangles iteratively for all x’s, we get the
following for P (x, 1):

P (x, 1) = p [px + P (x − 1, 1) − pxθ(x)] , x ≥ 1 (12)

with P (0, 1) = p and

θ(x) = p[p + θ(x − 1) − pθ(x − 1)], x ≥ 1 (13)

with θ(0) = 0, where x can be any integer. The derivation
is symmetric for the ladder connectivity in the other three
quadrants for the main-side street scenarios.
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Figure 6: Ladder Connectivity Illustration.
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Figure 7: Ladder Connectivity Validation.

Figure 7 shows the results from recursion (12) and (13),
and compares them with simulation results. The vehicle
transmission range is 200 m and the distance between two
adjacent intersections is 500 m. The x-axis is the west-east
coordinate of side street Z–X, which is 500 m away from
the parallel main street. The message source O is on the
main street with x-coordinate equal to 0. As shown in the
figure, the recursive analysis and the simulation match well
with each other, and we have not found similar results in the
literature yet. The results show that the connectivity prob-
ability decays fast w.r.t. the distance, for all traffic densities.
However, when compared with the results from the 1-d case,
the connectivity probability at the same x-coordinate offset
with the same traffic density is much higher. For example,
with λ = 0.02, the connectivity probability at x = 4 km off-
set for the 2-d ladder case is above 0.5, while the connectiv-
ity for the 1-d case is only around 0.2, as shown in Figure 3,
since there are more paths available from the source in the
2-d ladder case, while the 1-d case only has one.

3.2.3 Lattice Connectivity

For the general 2-d lattice case, e.g., the origin-destination
pair O–D in Figure 1, we have the following numerical for-
mulation to derive the end-to-end connectivity probability.
First, we enumerate all the possible paths from (0, 0) to
(x, y), then by the principle of inclusion-exclusion (PIE),
P (x, y) can be obtained by calculating the probabilities of
different combinations of paths and crosschecking their over-
lapping street segments. As an example, we assume the
destination point is (2, 1), and then all the possible paths
starting from (0, 0) are

A : (0, 0) → (1, 0) → (2, 0) → (2, 1)

B : (0, 0) → (1, 0) → (1, 1) → (2, 1)

C : (0, 0) → (0, 1) → (1, 1) → (2, 1)

By PIE,

P (2, 1) = P (A + B + C)

= P (A) + P (B) + P (C) − P (AB)

−P (AC) − P (BC) + P (ABC)

= p3 + p3 + p3 − p5 − p5 − p6 + p7,

which has the same result as that in Section 3.2.2. P (AB) =
p5 and P (BC) = p6 since paths A and B together have 5
non-overlapping street segments, while paths B and C have
6 non-overlapping ones.

Ideally, any P (x, y) can be computed by this enumeration-
combination method. Unfortunately, this approach suffers
from the combinatorial explosion problem and does not scale,
and the computation becomes intractable when x + y be-
comes larger. For instance, when x = 5, y = 3, the number
of different paths is

`

x+y
y

´

= 56, and the number of differ-

ent combinations of these 56 paths can be as many as
`

56
28

´

=

7.6487×1015, each of which has |x|+|y| = 8 street segments.
If we store these street segments in a bit map, which requires
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38 bits per path since there are (x + 1)y + x(y + 1) = 38
unique street segments, then the memory required will be
38×7.6487×1015/8 bytes ≈ 3.63×107 GB—this is only for
a 5× 3 lattice. The problem of deriving connectivity proba-
bilities with arbitrary x and y is a central problem of directed
percolation [11] in Physics and Stochastic Processes, which
still remains unsolved after many years of efforts.

4. PERFORMANCE EVALUATION
In the last section, we have derived the connectivity prob-

ability for the 1-d and the 2-d ladder case, and found the
2-d lattice case is not yet analytically solvable. In this sec-
tion, we go further and evaluate the static connectivity [19]
of these cases by simulation. In vehicular networks, there
are different ways for vehicles to forward the messages they
have received. Geo-constrained forwarding (GF) that we
studied in Section 3 is commonly used to avoid message re-
dundancy, link contention, hidden terminal and broadcast
storm problems. Unconstrained forwarding (UF), on the
other hand, is an extension of the former in the sense that
vehicles can forward messages to neighbors in all directions,
so messages may potentially go backwards, as shown by both
the solid and dashed arrows in Figure 1. Unconstrained for-
warding may improve network connectivity, but may also
increase the overhead in terms of broadcast cost, i.e., the
number of transmissions of each message. It is interesting
to quantify and compare the performance and cost of these
two message forwarding strategies, with and without geo-
graphic constraints, respectively: unconstrained forwarding
is equivalent to percolation process, whereas geo-constrained
forwarding corresponds to directed percolation in [11].

In both message forwarding strategies, whenever a vehicle
overhears the same message from the neighbors in the oppo-
site direction, it will not rebroadcast that message again, in
order to reduce overhead and possible collisions; otherwise,
the vehicle rebroadcasts the message periodically up to a re-
transmission limit. We use simulation to compare these two
forwarding strategies and reveal the tradeoff between them.
All simulation is done in Matlab. By using an exponential
random variable generator and a square lattice map, vehi-
cle locations are constrained to the vertical and horizontal
streets. Street are 500 m apart, all vehicles have the same
transmission range R, varying from 150 to 300 m with η = 1,
and all the results are averaged over 1, 000 simulation runs.

4.1 Geo-Constrained Forwarding
In geo-constrained forwarding, similar to directed percola-

tion [11], the probability of each street segment to be open is
determined by p in (9). We first plot the network connectiv-
ity that measures the percentage of the vehicles connected
to the source node in a 3× 3 km2 grid map. Figure 8 shows
the change of network connectivity, from 0 to 1, with dif-
ferent vehicle densities. Such transitions are similar to the
results in [18]. Combining Figures 5 and 8, we note that the
critical threshold pc (above which the network connectivity
is close to 1) is much larger than 0.5 (the critical threshold
for the undirected bond percolation in a grid [9]).

We then look at the connectivity probability at a certain
location in the network. In Figure 9, different curves in each
sub-figure show the connectivity probability for the vehicles
on different parallel streets in the lattice network, and the
x-axis represents the coordinates along each street. The co-
ordinate of the source is (0, 0), and the transmission range
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Figure 8: Network Connectivity with GF.

R is 200 m. Different sub-figures show the results with dif-
ferent vehicle densities λ, varying from 0.01 to 0.015 vehicles
per meter. The values of λ are carefully chosen according to
Figure 8, so the bond probability p is below, close, or above
the critical threshold for the directed bond percolation.

Typically, the further away a street is from the message
source, the lower the connectivity probability is for the ve-
hicles on that street, thus the message propagation within a
few blocks away from the source (e.g., the bold curves in this
figure) is of major concern. In Figure 9 we plot the connec-
tivity probability up to 30 km, in order to give a big picture
of the entire network, e.g., how the connectivity probability
decays or converges. Figures 9(a)–(d) show the simulation
results for geo-constrained forwarding, of which the results
are: around the critical point (with λ from 0.012 to 0.015),
even with a small change in traffic density, the connectivity
probabilities change significantly; once the critical point is
reached, the peak of the connectivity probability for each
street converges to an asymptotic value, as shown in Fig-
ure 9(d), but the connectivity decays eventually.

Another interesting observation is that, except the main
street, the connectivity probability on all the other streets
is not monotonic w.r.t. x. The dashed, Λ-shaped curves in
Figures 9(a)–(d) are for the main street; the bold curves are
for the side streets that are 3 blocks away; the solid curves
in the zoom-in window show the results for the 2-d ladder
case. All curves, except the ones for the main street, have
an M-shape, which means being closer to the message source
does not necessarily lead to a higher connectivity probability.
This is because, the closer an intersection is to the source,
the smaller number of paths exist between this intersection
and the source, although each path is shorter. If an intersec-
tion is on either of the streets where the source is located, for
example along W–E in Figure 1, vehicles can only forward
data in one direction: as a result, the connectivity for them
is the same as that in the 1-d case.

4.2 Unconstrained Forwarding
Observing the cluster size distribution in the 1-d case and

the limited connectivity probability in the 2-d lattice case
with geo-constrained forwarding, we find that clusters are
likely to be small and a large number of vehicles are un-
able to receive the message. By allowing the message to go
through other directions, as indicated by the dashed arrows
in Figure 1, clusters can be extended in these directions, i.e.,
including more neighbors for message delivery.
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(a) GF, λ = 0.01 (e) UF, λ = 0.01
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(b) GF, λ = 0.012 (f) UF, λ = 0.012
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Figure 9: Connectivity Probability: Geo-Constrained Forwarding (GF) vs. Unconstrained Forwarding (UF).
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Figure 10: Network Connectivity with UF.

As shown in Figure 10, the transitional behavior in uncon-
strained forwarding is similar to that in geo-constrained for-
warding, except that the critical threshold is much smaller,
and the transitions is also sharper. p can be found in Fig-
ure 5, e.g., when R = 200 m and λ is slightly larger than
0.01, the corresponding p is exactly 0.5. From Figure 9,
we can see another difference between these two forwarding
schemes. At super-critical stage, the connectivity probabil-
ity in geo-constrained forwarding converges to a value that is
much smaller than 1, whereas in unconstrained forwarding,
the connectivity probability is almost 1 as p approaches the
critical value, given the same vehicle density. The Λ-shaped
curves in Figures 9(e)–(h) still correspond to the main street,
where the street farthest away from the source has a much
lower connectivity probability due to edge effect.

In contrast to geo-constrained forwarding, the connectiv-
ity probability here is either monotonically deceasing with
distance or scattering around an asymptotic value. Taking
a closer observation, the results in Figure 9(e) with λ = 0.01
for unconstrained forwarding is similar to Figure 9(b) with
λ = 0.012 for geo-constrained forwarding, because the latter
has relatively limited choices of path selection. As shown in
Figures 9(e) and (f), λ is only increased by 0.002, i.e., adding
one vehicle every 500 m, the connectivity probability of ve-
hicles increases drastically from below 20% to higher than
85%. When λ is further increased to 0.0135, as shown in
Figure 9(g), the connectivity probability of most vehicles ex-
ceeds 95%. After that, further increasing λ does not change
the connectivity probability significantly, as in Figure 9(h).
This tells us that when p is above the critical threshold 0.5,
there is no more significant increase in network connectivity.
The above results can help the application to decide whether
it is necessary to increase p, e.g., by using a larger transmis-
sion power, or use unconstrained forwarding to improve the
message connectivity.

4.3 Broadcast Cost
The high connectivity achieved by unconstrained forward-

ing is at the expense of a higher broadcast cost than geo-
constrained forwarding. Figures 11(a) and (b) show the av-
erage number of transmissions for each message with these
two forwarding schemes normalized to their connectivity, us-
ing the same parameter settings for comparison. Here, we
use a simplified setting by assuming that there is no trans-
mission error for each broadcast, and the vehicle within the
transmission range and farthest away from the transmit-

ter will rebroadcast. Geo-constrained forwarding has lower
broadcast cost, although its connectivity is limited. There-
fore it reduces the amount of network resources required,
such as communication bandwidth and buffer space.

The decision whether to use geo-constrained or uncon-
strained forwarding, thus also depends on the application.
If messages need to be propagated as far as possible, e.g.,
hotel, dining, or parking lot information, then using uncon-
strained forwarding (probably at a lower message frequency)
can let the information traverse the network without a high
demand on vehicle density. Road hazard or traffic conges-
tion, on the other hand, only has high impact on nearby
streets, therefore the messages need to be propagated within
a few hops as soon as possible; in this case geo-constrained
forwarding is preferable due to its low broadcast cost and
potentially fewer collisions.

5. FURTHER DISCUSSION
In this paper, we have derived the connectivity probabil-

ity for the 1-d and 2-d ladder cases, based on traffic density
λ, radio transmission range R, and street segment length d,
which can be encapsulated into the connectivity probability
of two adjacent intersections, i.e., p. To derive p, we have
to make assumptions on λ (e.g., homogeneous exponential
distribution). However, no matter how p is derived mathe-
matically or obtained empirically, our approach to deriving
the connectivity probability for the 2-d ladder case still ap-
plies. Also, our approach to deriving the connectivity prob-
ability in the 1-d case is much simpler and more accurate.
We used geo-constrained forwarding for derivation, but un-
constrained forwarding can be considered as well.

Note that, with a simple extension, ladder connectivity in
(12) and (13) can be used to derive the connectivity prob-
ability where the bond probability of horizontal street seg-
ments is different from that of vertical street segments. In
addition, this approach can be used to deal with dynamic
traffic shifting: when the vehicles in the main street are no
longer connected (e.g., due to detour), the two side streets
can form new ladders themselves, and the recursive method
can be applied to recalculate the connectivity probability.
Other practical factors, such as packet loss due to wireless
channel impairments or collisions and how the physical, link,
and network layers react to them, can be further considered
in deriving the bond probability, so our work can be ex-
tended to include these realistic wireless channel characteris-
tics and the implementation details of the MAC and routing
protocols. Our results also can be used to study the trade-
off between connectivity and throughput: if each node uses
a lower data rate for transmission, then the transmission
range can be larger, but each message transmission will oc-
cupy the channel longer, and more wireless resources will be
consumed. Incorporating throughput, collision and schedul-
ing analysis is critical in modeling vehicular networks, and
it is open for further research. Nevertheless, the physical
connectivity in our study is a necessary condition for the
connectivity at the network and higher layers.

So far our work has been limited to a snapshot of the net-
work only, and has not considered vehicle mobility, or vehi-
cles traveling at different speed in different road segments,
i.e., the snapshot may become time variant. One possible
extension to the existing work is to use mobility trace in the
existing simulation, and study the characteristics of network
connectivity under certain mobility models. Also, “carry-
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(a) Geo-Constrained Forwarding (b) Unconstrained Forwarding

Figure 11: Broadcast Overhead: Normalized Average Number of Transmissions.

and-forward” messages between vehicles traveling in oppo-
site directions can be applied for delay-tolerant applications.
Different from unconstrained forwarding, carry-and-forward
utilizes vehicle mobility, instead of forwarding directions, to
opportunistically extend the cluster size. In two-dimensional
networks, this problem is much more difficult since vehicles
may turn to the other directions at intersections.

6. CONCLUSIONS
In this paper, we have considered the fundamental limits

of message propagation in VANET, and explored both vehi-
cle and message characteristics in one and two-dimensional
cases for highway and city scenarios. Starting from a one-
dimensional street, we have derived and analyzed the net-
work connectivity properties in the 2-d ladder and lattice
cases. As obtaining the analytical result for the lattice topol-
ogy is very difficult (a closed-form or recursive expression,
if found, would constitute a major milestone in Stochastic
Processes.), we have used extensive simulation to gain in-
sights from the tradeoff between geo-constrained and uncon-
strained forwarding, for future network planning and proto-
col development. Pursuing further results in an arbitrary
two-dimensional lattice network, and solving the problems
posed in Section 5, thus constitute our ongoing work.
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